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Abstract

We develop an envelope condition method (ECM) for dynamic program-
ming problems �a tractable alternative to expensive conventional value func-
tion iteration. ECM has two novel features: First, to reduce the cost, ECM
replaces expensive backward iteration on Bellman equation with relatively
cheap forward iteration on an envelope condition. Second, to increase the
accuracy of solutions, ECM solves for derivatives of a value function jointly
with a value function itself. We complement ECM with other computational
techniques that are suitable for high-dimensional problems, such as simulation-
based grids, monomial integration rules and derivative-free solvers. The result-
ing value-iterative ECM method can accurately solve models with at least up
to 20 state variables and can successfully compete in accuracy and speed with
state-of-the-art Euler equation methods. We also use ECM to solve a chal-
lenging default risk model with a kink in value and policy functions, and we
�nd it to be fast, accurate and reliable.
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1 Introduction

We develop an envelope condition method (ECM) for dynamic programming prob-
lems � a tractable alternative to expensive conventional value function iteration
(VFI). ECM has two novel features: First, to reduce the cost, ECM replaces ex-
pensive backward iteration on Bellman equation with relatively cheap forward it-
eration on an envelope condition. Second, to increase the accuracy of solutions,
ECM also solves for derivatives of a value function jointly with a value function it-
self. We complement ECM with other computational techniques that are suitable
for high-dimensional problems, such as simulation-based grids, monomial integra-
tion rules and derivative-free solvers. The resulting value-iterative ECM method can
accurately solve models with at least up to 20 state variables and can successfully
compete in accuracy and speed with state-of-the-art Euler equation methods. We
also use ECM to solve a challenging default risk model with a kink in value and
policy functions, and we �nd it to be fast, accurate and reliable.
First, as an illustration, we use ECM to solve the standard one-agent optimal

growth model with inelastic labor supply. In such a model, either conventional VFI
performs numerical optimization (to �nd a maximum of the right side of the Bellman
equation) or it performs numerical root�nding (to �nd a solution to a FOC). In con-
trast, ECM leads us to an alternative recursion that requires only direct calculations
and that delivers a solution to the Bellman equation without the need of either nu-
merical optimization or numerical solvers. We establish the following formal results
about the ECM recursion: First, the ECM operator has the same �xed point solu-
tion as the regular Bellman operator. Second, an appropriately constructed ECM
operator with damping is a contraction mapping like the regular Bellman operator.
In our numerical experiments, the ECM method has rapid convergence and produces
very accurate solutions.
We also develop a version of ECM that approximates derivatives of value function

(possibly, jointly with value function) instead of value function itself. This version of
ECM produces more accurate solutions than an otherwise identical ECM that solves
exclusively for a value function. This is because solving accurately for value function
does not necessarily leads to su¢ ciently accurate approximations of its derivatives.
For example, if a value function is approximated with a polynomial of degree n, then
its derivatives are e¤ectively approximated with a polynomial of degree n � 1, i.e.,
we "loose" one polynomial degree when di¤erentiating a value function. In contrast,
by approximating derivatives of value function directly, we focus on the object that
identi�es policy functions and hence, obtain more accurate solutions.
Second, we complement ECMwith computational techniques that are tractable in
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high-dimensional applications, including stochastic simulation, non-product mono-
mial integration rules, and derivative-free solvers, to solve a multicountry growth
model with up to 10 countries (20 state variables).1 This model is the one studied in
the February 2011�s special issue of the Journal of Economic Dynamics and Control
(henceforth, JEDC project) which compares the performance of six state-of-the-art
solution methods.2 We show that the ECM methods is tractable and reliable in this
setting and able to successfully compete with state-of-the-art Euler equation meth-
ods in the high-dimensional applications which were part of the JEDC project. For
our most accurate third-degree polynomial solutions, maximum unit-free residuals
in the model�s equations are always smaller than 0:002% on a stochastic simulation
of 10; 000 observations.
The third application is a default risk model. We apply the ECM to a sovereign

default model that is a variant of the Arellano (2008) model. Default models are
challenging computationally because value and policy functions have kinks and the
price function of debt depends on the level of debt re�ecting default probabilities. We
show that the ECM methods are reliable and fast in computing this model. Relative
to the expensive VFI method, ECM speeds up the computation time by more than 50
times. In this application, we solve a benchmark default risk model. Nevertheless, we
think that ECM can be useful for many other applications with default risk. In fact, a
substantial hurdle for the growing literature on sovereign default is the computational
cost; see, e.g., Aguiar and Gopinath (2006), Chatterjee, Corbae, Nakajima and Ríos-
Rull (2007), Maliar, Maliar and Pérez-Sebastián (2008), Chatterjee and Eyigundor
(2011), Arellano, Bai, and Kehoe (2013) and Tsyrennikov (2013); see Aguiar and
Amador (2013) for a review of the literature on sovereign debt. The ECM methods
can facilitate the development of this literature by expanding the types of problems
that can be e¢ ciently solved.
There is a large body of literature that focuses on solving DP problems including

methods based on discretization of state space (e.g., Rust (1996, 1997)), stochastic
simulation methods (e.g., Smith (1991, 1993), Maliar and Maliar (2005)), learning
methods (e.g., Bertsekas and Tsitsiklis (1996)), perturbation methods (e.g., Judd
(1998)), approximate DP methods (e.g., Powell (2011)), polyhedral approximations

1See Maliar and Maliar (2014) for a survey of such methods.
2The objectives of the JEDC project are described in Den Haan, Judd and Juillard (2011);

the methodology of the numerical analysis is outlined in Juillard and Villemot (2011); the results
of the comparison analysis are provided in Kollmann, Maliar, Malin and Pichler (2011). The six
participating methods are �rst- and second-order perturbation methods of Kollmann, Kim and
Kim (2011), stochastic simulation and cluster-grid algorithms of Maliar, Maliar and Judd (2011),
monomial rule Galerkin method of Pichler (2011) and Smolyak�s collocation method of Malin,
Krueger and Kubler (2011).
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(e.g., Judd, Yeltekin and Conklin (2003), Fukushima and Waki (2011)); also see
Rust (2008), Judd (1998), Santos (1999), Stachursky (2009) for literature reviews.
From one side, many methods, which are accurate and reliable in problems with low
dimensionality, are not tractable in problems with high dimensionality. This is in
particular true for projection-style methods that rely on tensor product rules in the
construction of either grid points or integration nodes. From the other side, methods
that are tractable in high-dimensional problems may be insu¢ ciently accurate. One
example is perturbation methods whose accuracy deteriorates rapidly away from the
steady state. Another example is simulation-based methods, including approximate
DP methods and learning methods, whose accuracy is limited by a low (square-root)
rate of convergence of Monte Carlo simulation, see Judd, Maliar and Maliar (2011).
Endogenous grid method (EGM) of Carroll (2005) reduces the cost of conven-

tional VFI; see also Barillas and Fernández-Villaverde (2007), Ishakov, Rust and
Schjerning (2012). In a companion paper, Maliar and Maliar (2013) compare the
ECM and EGM methods in the context of a one-agent model with elastic labor sup-
ply and �nd that the two methods are very similar both in terms of accuracy of
solutions and computational expense. However, in more complex applications, one
method may have advantages over the other. Constructing a grid on future state
variables under EGM is complicated in problems with kinks in future state variables
(due to, e.g., occasionally binding inequality constraints or default) because it is not
known at the stage of initialization if an inequality constraint binds or if a default
occurs in a given grid point. This typically requires to nest the EGM method within
another iterative procedure; see, e.g., Villemot (2012), Fella (2014). In contrasts,
ECM methods use the conventional current state variables and may be easier to
implement.
Other papers that solve high-dimensional problems are multicountry models with

20-60 state variables in Judd, Maliar and Maliar (2011, 2012, 2013); medium scale
new Keynesian models in Judd, Maliar and Maliar (2012), Fernández-Villaverde,
Gordon, Guerrón-Quintana, and Rubio-Ramírez (2012), Aruoba and Schorfheide
(2013), Lopez-Salido (2014), etc.; and large-scale OLG models with 80 state variables
in Hasanhodzic and Kotliko¤ (2013). All the methods that solve high-dimensional
problems, including those participating in the JEDC project, build on Euler equa-
tions, and none of these papers uses value iterative approaches even when the studied
models admit a dynamic programming representation. However, value iterative ap-
proaches that build on ECM can successfully compete with state-of-the-art Euler
equation methods in high-dimensional applications. In particular, we are able to
compute polynomial approximations up to third degree, while the Euler equation
methods participating in the comparison analysis of Kollmann, Maliar, Malin and
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Pichler (2011b) are limited to second-degree polynomials (due to their high compu-
tational expense).
The rest of the paper is organized as follows. In Section 2, we illustrate the

ECM methods in the context of the standard one-agent neoclassical growth model.
In Section 3, we apply the ECM methods to solve the multicountry growth models
studied in the JEDC project. In Section 4, we apply the ECM method to solve a
default risk model. In Section 5, we conclude.

2 ECM in the one-agent growth model

We illustrate the envelope condition method (ECM) in the context of the standard
one-agent neoclassical growth model.

2.1 The model

We consider a dynamic programming (DP) problem of �nding a value function, V ,
that solves the Bellman equation,

V (k; z) = max
c;k0

fu (c) + �E [V (k0; z0)]g (1)

s.t. k0 = (1� �) k + zf (k)� c; (2)

ln z0 = � ln z + "0; "0 � N
�
0; �2

�
; (3)

where k, c and z are capital, consumption and productivity level, respectively; � 2
(0; 1); � 2 (0; 1]; � 2 (�1; 1); � � 0; the utility and production functions, u and
f , respectively, are strictly increasing, continuously di¤erentiable and concave; the
primes on variables denote next-period values, and E [V (k0; z0)] is an expectation
conditional on state (k; z).
We assume that a solution to Bellman equation (1)�(3) is interior and that V is

di¤erentiable. Therefore, the optimal quantities satisfy a �rst-order condition (FOC)
with respect to consumption and an envelope condition, which, respectively, are

uc (c) = �E [Vk (k
0; z0)] ; (4)

Vk (k; z) = uc (c) [1� � + zfk (k)] : (5)

Here and further in the paper, Fx (:::; x; :::) denotes a �rst-order partial derivative of
function F (:::; x; :::) with respect to variable x.
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2.2 Envelope condition methods

A distinctive feature of the ECM solution methods, advocated in the present paper,
is that they build on envelope condition (5) instead of FOC (4). To illustrate the
idea of the ECM method, let us recall how envelope condition (5) is constructed for
the model (1)�(3). We write Vk (k; z) as

Vk (k; z) = uc (C (k; z))Ck (k; z) + �E [Vk (K (k; z) ; z
0)]Kk (k; z) ; (6)

where c = C (k; z) and k0 = K (k; z) are the optimal policy functions. According to
(2), we have Kk (k; z) = 1� � + zf (k)�Ck (k; z), which allows us to re-write (6) as

Vk (k; z) = uc (C (k; z)) [1� � + zfk (k)]| {z }
Envelope condition

+ f�E [Vk (k0; z0)]� uc (C (k; z))g| {z }
FOC

Kk (k; z) : (7)

Conventional value function iteration (VFI) solves for C (k; z) by setting FOC (4)
equal to zero and hence, it enforces the envelope condition (5) indirectly. In turn,
ECM studied here goes the other way around: it solves for C (k; z) using envelope
condition (5), and hence, it enforces FOC (4) indirectly. Both ways of iteration must
lead to the same solution since the converged policy function C (k; z) must satisfy
both FOC (4) and envelope condition (5).
The above di¤erence in the construction of policy functions turned out to be

important for both computational expense and convergence properties of value it-
erative methods. The key advantage of ECM over conventional VFI is that solving
for policy functions from an envelope condition is generally easier than solving for
it from FOCs. The shortcoming of ECM is that its convergence requires additional
and more stringent restrictions such as iteration with damping. In the next section,
we describe two variants of ECM, one is ECM-VF that solves for a value function
and the other is ECM-DVF that solves for a derivative of value function.

2.2.1 ECM-VF

ECM-VF �nds a solution to (1)�(3) by solving the following �xed-point problem:
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ECM-VF
Given V , for each point (k; z), de�ne the following recursion:

i). c = u0�1
h

Vk(k;z)
1��+zf 0(k)

i
.

ii). k0 = (1� �) k + zf (k)� c.
iii). bV (k; z) = u (c) + �E [V (k0; z0)].

The optimal value function satis�es bV = V .
Formulas i) and ii) are envelope condition (5) and budget constraint (2), respectively,
and formula iii) is Bellman equation (1) evaluated under optimal policy functions
(which eliminates the maximization sign). We observe that under ECM, neither
numerical maximization nor numerical solver is necessary for iteration on the Bellman
equation: we take some V , �nd c in i), �nd k0 in ii) and compute a new bV in iii):
these all are direct calculations.3

Two related methods in the literature are conventional value function iteration
(VFI) and endogenous grid method (EGM) of Carroll (2005). Both methods perform
time iteration on FOC (4), namely, they guess value function at t + 1 and use the
Bellman equation to compute value function at t. FOC (4) combined with budget
constraint (2) becomes

u0 (c) = �E [Vk ((1� �) k + zf (k)� c; z0)] : (8)

Conventional VFI solves for c that satis�es (8) given (k; z).

Conventional VFI
Given V , for each point (k; z), de�ne the following recursion:
i). Find c satisfying u0 (c) = �E [Vk ((1� �) k + zf (k)� c; z0)].
ii). k0 = (1� �) k + zf (k)� c.
iii). bV (k; z) = u (c) + �E [V (k0; z0)].

The optimal value function satis�es bV = V .
Conventional VFI is expensive because Step i) requires us to numerically �nd a root
to (8) for each (k; z) by interpolating Vk to new values (k0; z0) and by approximating
conditional expectation �this all must be done inside an iterative cycle; see Aruoba,
Fernández-Villaverde and Rubio-Ramírez (2006) for an example of cost assessment

3We also studied a variant of ECM-VF that performs policy function iteration instead of value
function iteration. Such a method guesses policy functions for consumption c = C (k; z) and/or
capital k = K (k; z), computes the corresponding V and uses it to recompute the policy functions,
iterating until convergence; see Rust (2008) and Stachursky (2009) for a general discussion about
value and policy function iterations. An example of ECM iterating on policy function is shown in
Section 3.
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of conventional VFI. (Alternatively, we can �nd k0 by maximizing the right side of
Bellman equation (1) directly without using FOCs, however, this is also expensive).
EGM of Carroll (2005) exploits the fact that it is easier to solve (8) with respect

to c given (k0; z) than to solve it with respect to c given (k; z). EGM constructs a
grid on (k0; z) by �xing the future endogenous state variable k0 and by treating the
current endogenous state variable k as unknown. Since k0 is �xed, EGM computes
E [Vk (k

0; z0)] up-front and thus can avoid costly interpolation and approximation of
expectation in a root�nding procedure.

EGM of Carroll (2005)
Given V , for each point (k0; z), de�ne the following recursion:
i). c = u0�1 f�E [Vk (k0; z0)]g.
ii). Find k satisfying k0 = (1� �) k + zf (k)� c.
iii). bV (k; z) = u (c) + �E [V (k0; z0)].

The optimal value function satis�es bV = V .
In Step ii) of EGM, we still need to �nd k numerically. However, for the studied
model, Carroll (2005) shows a change of variables that makes it possible to avoid
�nding k on each iteration (except of the very last iteration).
Our ECM-VF di¤ers from the above two methods in that it iterates forward

rather than backward. To be speci�c, it makes a guess on the current value function
instead of the future value function, and it solves for the model�s variables using
envelope condition (5) instead of FOC (4). As we had seen, ECM-VF avoids the
root�nding completely in studied model (even without a change of variables). Thus,
it attains the same result as the EGM of Carroll (2005) via a di¤erent mechanism. In
more complicated models, for example, an optimal growth model with elastic labor
supply, neither EGM nor ECM avoid the root�nding completely but still simplify it
considerably compared to conventional VFI; see Barillas and Fernández-Villaverde
(2007) for an extension of EGM to a model with elastic labor supply. In a compan-
ion paper, Maliar and Maliar (2013) show that ECM-VF and EGM perform very
similarly in terms of their accuracy and speed in the context of a model with elastic
labor supply.
EGM of Carroll (2005) is non-trivial to implement for models in which future state

variables have kinks, for example, for models with occasionally binding inequality
constraints or with a risk of default. Since EGM needs to construct a grid on future
state variables, we must specify whether an inequality constraint binds or whether
a default occurs in each grid point. This is generally not possible to do before the
model is solved. To deal with this complication, the literature nests EGM within
another iterative procedure; see, e.g., Villemot (2012), Fella (2014). The proposed
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ECM methods may have advantages over EGM for this kind of problems as they
construct grids on present state variables whose values are naturally known. In
Section 4, we apply an ECM method to solve a default risk model.

2.2.2 ECM-DVF

ECM-DVF is similar to ECM-VF however it solves for a derivative of value function
instead of value function itself. Combining (4) and (5) gives the following useful
recursion for a derivative of the value function

Vk (k; z) = � [1� � + zf 0 (k)]E [Vk (k0; z0)] : (9)

Recursion (9) can be viewed as an analogue of the Bellman equation written for a
derivative of value function.
For the model (1)�(3), the ECM-DVF �xed-point problem is as follows:

ECM-DVF
Given Vk for each point (k; z), de�ne the following recursion:

i). c = u0�1
h

Vk(k;z)
1��+zf 0(k)

i
.

ii). k0 = (1� �) k + zf (k)� c.
iii). bVk (k; z) = � [1� � + zf 0 (k)]E [Vk (k0; z0)].

The derivative of optimal value function satis�es bVk = Vk.
Given a converged Vk, �nd V satisfying bV (k; z) = u (c) + �E [V (k0; z0)] :
The di¤erence of ECM-DVF from the previously studied ECM-VF consists in that
we iterate on Vk without computing V on each iteration. We only compute V at the
very end, when both Vk and the optimal policy functions are constructed.
Again, neither numerical maximization nor a numerical solver is necessary under

ECM-DVF. Instead, only direct calculations are needed: we take some Vk, �nd c in
i), �nd k0 in ii) and compute a new bVk in iii): these are all direct calculations. We
also studied a variant of ECM-DVF that performs policy function iteration instead
of value function iteration.
In our numerical experiments, a version of ECM-DVF that solves for a derivative

of value function produces more accurate solutions than an otherwise identical ECM-
VF that solves exclusively for a value function. This is because solving accurately for
value function does not lead to su¢ ciently accurate approximations of its derivatives.
To see the point, assume that a value function is approximated with polynomial of
degree n. Then, its derivatives are e¤ectively approximated with a polynomial of
degree n � 1 since we "loose" one polynomial degree when di¤erentiating a value
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function. In contrast, when approximating derivatives of value function directly, we
focus on the object that identi�es policy functions and as a result, we obtain more
accurate solutions.
ECM-DVF has similarity to Euler equation methods; see Judd (1998) for a general

discussion of such methods. The "usual" Euler equation follows from optimality
conditions (4), (5): we update (5) to obtain Vk (k0; z0) and we substitute the result
into (4) to eliminate the unknown derivative of the value function,

u0 (c) = �E [u0 (c0) (1� � + z0f 0 (k0))] : (10)

Euler equation methods approximate policy functions for consumption c = C (k; z),
capital k0 = K (k; z) (or other policy functions) to satisfy (2), (3) and (10). Similarly
to ECM, Euler equation methods do not solve for a value function but only for
decision (policy) functions. One of possible decision functions is a derivative of value
function. Thus, recursion (9) can be also viewed as an Euler equation written in
terms of the derivative of value function.

2.3 Convergence properties of the ECM methods

We now study the convergence of the ECM methods. For the expositional conve-
nience, our analysis is limited to the optimal growth model (1)�(3), however, it can
be readily extended to other models that satisfy the standard assumptions such as
compactness and convexity of the budget set, smoothness and strong concavity of
the utility function and the interiority of solutions; see Stokey and Lucas (1989) and
Santos (1999, 2000) for a discussion of these assumptions, and see Stachursky (2009)
for weaker assumptions.

2.3.1 ECM-VF

We �rst consider an ECM-VF method described in Section 2.2.1. We de�ne the
regular Bellman operator T for the model (1)�(3) as:

TV (k; z) � u (cVT (k; z)) + �E [V (zf (k)� cVT (k; z) ; z0)] ; (11)

cVT (k; z) : u
0 (c) = �E [Vk (zf (k)� c; z0)] ; (12)

where cVT (k; z) is the consumption function de�ned implicitly by FOC (4). (To
simplify the notations, we assume � = 1 in this section).
We next introduce an operator Q that corresponds to the ECM-VF recursion

QV (k; z) � u
�
cVQ (k; z)

�
+ �E

�
V
�
zf (k)� cVQ (k; z) ; z0

��
; (13)

cVQ (k; z) : Vk (k; z) = u
0 (c) zf 0 (k) ; (14)
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where cVQ (k; z) is the consumption function de�ned implicitly by envelope condition
(5).
The operators T and Q are di¤erent but any �xed point of T is also a �xed point

of Q and vice versa. (This fact is well illustrated by formula (7) that shows that
imposing FOC enforces the envelope condition and vice versa).

Proposition 1 V � = TV � i¤ V � = QV �.

Proof. If V � is a �xed point of T , then assuming interiority, both FOC (4)
and envelope condition (5) hold for the same V �, in which case these two equations
identify the same policy function, i.e., cVT (k; z) and cVQ (k; z) are equal for all k; z.
Comparing T and Q, we have TV � = QV �. But V � = TV �, so V � = QV � also holds.
These results together with the fact that V � is a �xed point of T yield that V � is a
�xed point of Q and establish the claim of Proposition 1.

It is well known that the regular Bellman operator T is a contraction mapping and
thus, it guarantees a convergence to a �xed point V � starting from an arbitrary initial
guess V , i.e., T nV ! V � as n!1. Let us recall the proof.
Let V and W be two bounded continuous functions. Then, we have

jTV (k; z)� TW (k; z)j =���max
c
fu (c) + �E [V (zf (k)� c; z0)]g

�max
c
fu (c) + �E [W (zf (k)� c; z0)]g

��� :
Using the property of a maximum operator, we obtain

jTV (k; z)� TW (k; z)j �
max
c
jfu (c) + �E [V (zf (k)� c; z0)]g

�fu (c) + �E [W (zf (k)� c; z0)]gj :

Taking the supremum on the left-hand side shows that T is a contraction mapping
with a modulus �,

kTV � TWk � � kV �Wk ; (15)

where here and further in the text k�k is used to denote the supremum L1 norm.
We next ask: Is the ECM-VF operator Q a contraction mapping like T , or in

other words, does Q guarantee a convergence to a �xed point QnV ! V � as n!1?
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To answer this question, we repeat the above argument with the ECM-VF operator:

jQV (k; z)�QW (k; z)j =
ju (cV (k; z)) + �E [V (zf (k)� cV (k; z) ; z0)]

�u (cW (k; z))� �E [W (zf (k)� cW (k; z) ; z0)]j ; (16)

where cV (k; z) and cW (k; z) are consumption functions generated by the envelope
conditions of V and W , respectively,

cV (k; z) : Vk (k; z) = u
0 (c) zf 0 (k) ;

cW (k; z) : Wk (k; z) = u
0 (c) zf 0 (k) : (17)

By using a triangular inequality and by taking a supremum of (16), we arrive at

kQV �QWk � ku (cV )� u (cW )k+ � kV �Wk : (18)

Formula (18) for the ECM operator Q has a new term ku (cV )� u (cW )k compared
to a similar formula (15) for the regular Bellman operator T . This term can be
potentially large if the derivatives of V and W are very di¤erent, and hence, the
ECM operator Q is not necessarily a contraction mapping.
Why do the Bellman and ECM operators have di¤erent convergence properties?

A solution to envelope condition (5) does not maximize the right side of the Bellman
equation for any V that occurs in iteration but only for a limiting �xed-point solution
V �. Since ECM does not produce a maximum of the Bellman equation in each
iteration, it is not possible to cancel ku (cV )� u (cW )k as is possible to do under the
regular Bellman operator. (Similarly, the regular Bellman operator, enforces FOC
(4) in each iteration but does not enforces envelope condition (5); it only enforces
such a condition in the limiting �xed point V �).
Formula (18) shows that when the derivative Vk is �xed, the ECM-VF operator

has the same convergence properties as the regular Bellman operator including a
linear convergence rate �. In particular, if we know the derivative V �k that corre-
sponds to the true solution V � (for example, we solve for V �k using the ECM-DVF
method described in Section 2.2.2), then we have that Vk = Wk = V �k , the term
ku (cV )� u (cW )k disappears, and (18) is identical to (15). If we �x some arbitrary
Vk, the ECM operator still converges as long as we maintain Vk �xed. However, in
the latter case, ECM does not converge to the true value function V � but to some
other function that corresponds to �xed Vk. This reasoning suggests that one can
implement the ECM-VF method (18) using two nested loops: in the inner loop, we
solve for V holding Vk �xed, and in the outer loop, we gradually update Vk to match
the derivative V constructed in the inner loop, iterating until convergence.
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In fact, to guarantee a contraction-mapping property of the ECM operator, the
term ku (cV )� u (cW )k does not need to be zero but just needs to be su¢ ciently
small. Hence, another possible implementation of the ECM-VF method is update the
derivative Vk slowly enough to keep ku (cV )� u (cW )k < � kV �Wk along iterations
(instead of the outer and inner loops). We attain this by introducing iteration with
damping. To be speci�c, let us de�ne a version of the ECM operator Q� such that

Q�V (k; z) � u
�
cVQ� (k; z)

�
+ �E

h
V (i)

�
zf (k)� cVQ� (k; z) ; z

0
�i
; (19)

cVQ� (k; z) : (1� �)V (i�1)k (k; z) + �V
(i)
k (k; z) = u0 (c) zf 0 (k) ; (20)

where V (i�1) and V (i) are value functions obtained on iterations i� 1 and i, respec-
tively, i � 2, and � 2 (0; 1) is a damping parameter. That is, on each iteration, we
update V entirely but we update Vk only partially (the algorithm ECM-VF described
in Section 2.2.1 must be modi�ed respectively).

The following proposition shows that the ECM-VF method with damping is a con-
traction mapping if � is su¢ ciently small.

Proposition 2 There exists � 2 (0; 1) such that

kQ�V �Q�Wk < kV �Wk : (21)

Proof. Let us �x V (i�1) and hence V (i�1)k , obtained on iteration i�1, and consideru�cVQ��� u�cWQ�

�, where cVQ� is given by (20) and cWQ�
is de�ned as follows

cWQ�
(k; z) : (1� �)V (i�1)k (k; z) + �W

(i)
k (k; z) = u0 (c) zf 0 (k) : (22)

By construction, this term can be made arbitrarily small by reducing the value of
� (in the limit, � = 0, this term is zero since cVQ� = cWQ�

). In particular, for some

� 2 (0; 1), we have
u�cVQ��� u�cWQ�

� < (1� �) kV �Wk. Then, formula (18)
implies

kQV �QWk �
u�cVQ��� u�cWQ�

�+ � kV �Wk
< (1� �) kV �Wk+ � kV �Wk :

This last results establishes the claim of Proposition 2.

13



Proposition 2 implies that the convergence rate of the ECM-VF operator with damp-
ing Q� in particular depends on damping parameter �: the smaller is �, the slower is
the convergence rate. Hence, we must use the largest possible value of � that is con-
sistent with the condition ku (cV )� u (cW )k < � kV �Wk. Some experimentation
may be needed for �nding such a value of �. The convergence rate of the ECM-VF
with damping can be considerably smaller than the convergence rate of the regular
Bellman operator T . Still, one iteration of Q� is far less expensive than one iteration
of T , and signi�cant saving in cost may be possible, especially, for problems with
high dimensionality.

2.3.2 ECM-DVF

We next turn to our second method ECM-DVF described in Section 2.2.2. We
introduce the operator D that corresponds to the ECM-DVF recursion as follows:

DVk (k; z) � zf 0 (k) �E [Vk (zf (k)� cV (k; z) ; z0)] (23)

cV (k; z) : Vk (k; z) = u
0 (c) zf 0 (k) : (24)

We investigate the convergence properties of the ECM-DVF operator as we did for
ECM-VF. Let Vk and Wk be two bounded continuous functions. Then, we have

jDVk(k; �)�DWk(k; �)j =
zf 0 (k) � jEVk [(zf (k)� cV (k; z) ; z0)]� EWk [(zf (k)� cW (k; z) ; z0)]j

By taking a supremum, we obtain

kDVk �DWkk � zf 0 (k) � kVk �Wkk : (25)

To have a contraction mapping, we need the term zf 0(k)� that premultiplies kVk �Wkk
to be smaller than 1 for all (k; z). However, this is not the case: this term is equal to
1 in the steady state, and it is either smaller or larger than 1 depending on a speci�c
state (k; z) considered.
Another possible way to prove that a mapping is a contraction is to show that

it satis�es the Blackwell su¢ ciency conditions; see Santos (1999) and Stachursky
(2009) for a discussion of these conditions. We �nd that the operator ECM-DVF
possesses the property of monotonicity but not discounting which agrees with the
result (25). (Curiously, for the previously considered operator ECM-VF (13), (14),
we �nd exactly the opposite, namely, it possesses the property of discounting but
fails to satisfy monotonicity).

14



Hence, our theoretical analysis indicates that ECM-DVF (23) is not a contraction
mapping. Furthermore, in our numerical experiments, the ECM-DVF method was
numerically unstable. To stabilize the ECM-DCF method, we again use iteration
with damping. Namely, instead of a complete updating of Vk on each iteration, we
introduce an operator D� with a partial updating

D�Vk (k; z) � (1� �)Vk (k; z) + �zf 0 (k) �E [Vk (zf (k)� cV (k; z) ; z0)] ; (26)

where � 2 (0; 1). (In the algorithm ECM-DVF described in Section 2.2.2, we need
to modify Step iii), respectively). With values of � = 0:1 and lower, operator D�

converges in all our numerical experiments. See Maliar, Maliar and Judd (2011) for
a graphical illustration of how damping stabilizes explosive iteration.

2.3.3 Discussion

ECM-VF can be classi�ed as a DP method. An important advantage of the DP
class of methods is that under the appropriate assumptions, their properties can be
characterized analytically including their convergence rates, error bounds, numerical
stability and computational complexity; see Stokey and Lucas (1989), Santos (1999)
and Stachursky (2009) for reviews of formal results for such methods. We estab-
lish that ECM-VF with damping is a contraction mapping like the regular Bellman
operator.
In turn, ECM-DVF is similar to an Euler-equation class of methods. For such

methods, formal results are harder to obtain and even their convergence is in general
not guaranteed. E¤ectively, we need to �nd a numerical solution to a system of
non-linear equations. There are three approaches in the literature that are used to
solve non-linear systems of equations, namely, �xed-point iteration, time iteration,
and Newton-style solvers; see Maliar and Maliar (2014) for a discussion. Time it-
eration is a special kind of �xed-point iteration that mimics the Bellman operator:
given a guess about decision functions for future variables, it �nds the values of the
current variables to update the guess, iterating until convergence. Time iteration is
more numerically stable than other �xed-point iteration schemes, however, it is also
more expensive; see Judd (1998, Ch. 16) for a discussion. Moreira and Maldonado
(2003) show a variant of time-iteration method for deterministic problems that is a
contraction mapping. The idea is to construct a sequence of subiterations on the
Euler equation by exploiting a local saddle-path stability of the system. Another
paper that shows convergence results for their Euler equation method is Feng, Miao,
Peralta-Alva and Santos (2009).
Our ECM-DVF method is not related to a speci�c iterative procedure for �nding

a �xed point and is compatible with all the procedures discussed above. In our nu-
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merical experiments, we use �xed-point iteration with damping of type (26) because
it is simple, inexpensive and reliable, however, we could have used time iteration
or Newton-style solvers instead. For a version of ECM-DVF method based on time
iteration, we can possibly show (local) convergence by using a construction similar
to the one in Moreira and Maldonado (2003). However, the latter paper is limited to
deterministic settings. Generalizing their analysis to a stochastic case is a non-trivial
task and it goes beyond the scope of the present paper. We leave this extension for
further research.

2.4 Numerical analysis

We now present the results of numerical experiments for the one-agent model.

2.4.1 Computational choices

We parameterize the model (1)�(3) using the Cobb-Douglas utility and production
functions u (c) = c1��1

1� and f (k) = k�, and we calibrate the parameters to the stan-
dard values: � = 1=3, � = 0:99, � = 0:025, � = 0:95 and � = 0:01. In the benchmark
case, we use  = 1, and we perform the sensitivity experiments with respect to this
parameter. As a solution domain, we use a rectangular, uniformly spaced grid of
10 � 10 points for capital and productivity within an ergodic range (to determine
such a range we solve and simulate the model several times). We use a 10-node
Gauss-Hermite quadrature rule for approximating integrals. We parameterize value
function (ECM-VF) or a derivative of value function (ECM-DVF) with complete
ordinary polynomials of degrees up to 5. As an initial guess, we use a linear approx-
imation to the capital policy function. To solve for the polynomial coe¢ cients, we
use �xed-point iteration. We use MATLAB software, version 7.6.0.324 (R2012a) and
a desktop computer ASUS with Intel(R) Core(TM)2 Quad CPU Q9400 (2.66 GHz),
RAM 4MB. A detailed description of the algorithms is provided in Appendix A.

2.4.2 Results

In Table 1, we show the results for the two algorithms, ECM-VF and ECM-DVF. As a
measure of accuracy, we report the average and maximum absolute unit-free residuals
in Euler equation (10). The main result is that both ECM-VF and ECM-DVF
deliver high accuracy levels.4 The accuracy increases with a degree of approximating

4We also tried out versions of ECM that approximate value function jointly with its derivatives.
The results are nearly identical to those obtained when we approximate just the derivatives of value
function.



Table 1: Accuracy and speed of ECM-VF and ECM-DVF in the one-country model.a

Polynomial ECM-VF ECM-DVF
degree L1 L1 CPU L1 L1 CPU

1st - - - -3.39 -3.24 7.5
2nd -3.65 -3.42 0.7 -4.64 -4.21 5.0
3rd -4.83 -4.39 0.5 -5.68 -5.19 2.9
4th -5.96 -5.36 0.3 -6.83 -6.18 3.0
5th -7.12 -6.43 0.3 -8.01 -7.32 1.6

a Notes: L1 and L1 are, repectively, the average and maximum of absolute residuals across opti-
mality condition and test points (in log10 units) on a stochastic simulation of 10,000 observations;
CPU is the time necessary for computing a solution (in seconds).

polynomial. ECM-VF is less accurate than ECM-DVF given the same degree of
approximating polynomial. This is because if we approximate V with a polynomial
of some degree, we e¤ectively approximate Vk with a polynomial of one degree less,
i.e., we "lose" one polynomial degree. When  increases (decreases), the accuracy
of solutions decreases (increases); these cases are not reported. For example, under
 = 3 ( = 1=3), the residuals for ECM-VF vary with the polynomial degree from
�3:2 to �6:04 (from �3:83 to �7:51). For ECM-DVF, the corresponding residuals
vary from �2:98 to �6:63 (�3:59 to �8:44).
Finally, as we see from the table, the convergence of ECM-VF is faster than

that of ECM-DVF. The observed di¤erence in costs represents the di¤erence in the
number of iterations necessary for convergence. The reason why ECM-DVF needed
more iterations to converge because it was less numerically stable than ECM-VF
and we stabilized it using damping (26) with an updating rate of 10% per iteration
(we borrow this technique from the Euler equation class of methods). In contrast,
ECM-VF was stable without damping with an updating rate of 100% per iteration.

3 ECM in the multicountry model

We consider the model studied in the February 2011�s Journal of Economic Dynamics
and Control special issue on a comparison of solution methods. This is a stylized
stochastic growth model with N heterogeneous agents (interpreted as countries).
Each country is characterized by a capital stock and a productivity level, so that there
are 2N state variables. In addition to a potentially large number of state variables,
the model features endogenous labor-leisure choice, heterogeneity in fundamentals
and adjustment cost for capital.
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We view this model as a convenient framework for testing the performance of
solution methods in problems with high dimensionality. Namely, by varying N , we
can expand the size of the problem and assess how the running time and accuracy
are a¤ected by the number of state variables. Also, this model was solved by various
computational methods which provides a useful benchmark for comparison.

3.1 The model

Each country h = 1; :::; N is populated by one (representative) consumer. A social
planner maximizes a weighted sum of expected lifetime utilities of the consumers by
solving the following problem

V (k; z) = maxn
ch;`h;(kh)

0oh=1;:::;N
(

NX
h=1

�huh
�
ch; `h

�
+ �E [V (k0; z0)]

)
(27)

s.t.
NX
h=1

ch =
NX
h=1

24zhfh �kh; `h�� �
2
kh

 �
kh
�0

kh
� 1
!2
+ kh �

�
kh
�035 ; (28)

ln
�
zh
�0
= � ln zh + �

�
"h
�0
; (29)

where E is the operator of conditional expectation; ch, `h, kh, zh, uh, fh and �h

are consumption, labor, capital, productivity level, utility function, production func-
tion and welfare weight of a country h 2 f1; :::; Ng, respectively; ch, `h,

�
kh
�0 � 0;

� 2 [0; 1) is the discount factor; � is the adjustment-cost parameter. In the process
for productivity (29), � 2 (�1; 1) is the autocorrelation coe¢ cient of the produc-
tivity level; � > 0 determines the standard deviation of the productivity level; and�
("1)

0
; :::;

�
"N
�0�> � N (0N ;�) is a vector of productivity shocks with 0N 2 RN be-

ing a vector of zero means and � 2 RN�N being a variance-covariance matrix. Thus,
we allow for the case when productivity shocks of di¤erent countries are correlated.
Initial condition, k �

�
k1; :::; kN

�
and z �

�
z1; :::; zN

�
, is given, and a prime on

variables means their future values.
Again, we assume that the solution to DP problem (27)�(29) is interior and that

value function V is di¤erentiable. Hence, the planner�s choices satisfy the FOCs and
envelope condition, given, respectively, by

�E [Vkh (k
0; z0)] = �

"
1 + � �

 �
kh
�0

kh
� 1
!#

; (30)

�huhc
�
ch; `h

�
= �; (31)
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uh`
�
ch; `h

�
�h = ��zhfh`

�
kh; `h

�
; (32)

Vkh (k; z) = �

241 + zhfhk �kh; `h�+ �2
0@ �kh�0

kh

!2
� 1

1A35 ; (33)

where � is the Lagrange multiplier.

3.2 Envelope condition method

In the multicountry case, we implement versions of the ECM methods that perform
policy function iteration instead of value function iteration. This is because, opera-
tionally, it is easier to solve for a value function given policy function than to solve
for policy functions given value function.
We �rst eliminate � by combining FOC (30) and envelope condition (33) ,

1 =
�E [Vkh (k

0; z0)]

Vkh (k; z)

�
�h + zhfhk

�
kh; `h

��
oh

; (34)

where oh and �h are given by

oh � 1 + �
 �
kh
�0

kh
� 1
!

and �h = 1 +
�

2

0@ �kh�0
kh

!2
� 1

1A :
Condition (34) relates today�s and tomorrow�s derivatives of the value function. We
next use (34) to parameterize capital policy functions, namely, we premultiply both
sides of (34) with

�
kh
�0
to obtain

�
kh
�0
=
�E [Vkh (k

0; z0)]

Vkh (k; z)

�
�h + zhfhk

�
kh; `h

��
oh

�
kh
�0
: (35)

The optimal capital policy functions,
�
kh
�0
= Kh (k; z), h = 1; :::; N , must satisfy

a �xed point property: if we substitute such functions in the right side of (35), we
must obtain the same functions in the left side. Conditions (35) for h = 1; :::; N
provide us with a way to implement �xed-point iteration on capital policy functions.
Namely, we guess some policy functions Kh (k; z), h = 1; :::; N , substitute them in
the right side of (35), recompute

�
kh
�0
in the left side and iterate on these steps until

convergence.
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Parameterization (35) is analogous to the one used in Maliar, Maliar and Judd
(2011) to reparameterize the Euler equations in model (27)�(29),

�
kh
�0
= E

8<:�u
h
c

��
ch
�0
;
�
`h
�0�

uhc (c
h; `h)

h�
�h
�0
+
�
zh
�0
fhk

��
kh
�0
;
�
`h
�0�i

oh

9=;�kh�0 : (36)

This kind of representation of Euler equations was originally used in the context of
Monte Carlo based solution methods in which parameterizing expectation functions
in canonical Euler equations do not identify all model�s variables: see Den Haan
(1990) and Marcet and Lorenzoni (1999) for related examples. The identi�cation of
variables is not an issue for solution methods like ECM that builds on deterministic
integration techniques. However, solving nonlinear systems of equations (34) can be a
non-trivial and costly task, especially, when the dimensionality is large. In contrast,
�xed point iteration schemes like (35) and (36) are straightforward to implement;
again, only direct calculations are needed.

3.2.1 ECM-VF

The �xed-point problem for the ECM-VF method in the multicountry model is sim-
ilar to that in the one-country case except that we use policy function iteration
instead of value function iteration.

ECM-VF
Given Kh (k; z), h = 1; :::; N for each (k; z):
i). Compute

�
kh
�0
= Kh (k; z), h = 1; :::; N .

ii). Find (c; `) satisfying (28), (31) and (32) for each given
�
k;z;k0

�
.

iii). Find V satisfying V (k;z) =
PN
h=1 �

huh
�
ch; `h

�
+ �E

�
V
�
k0;z0

��
.

iv). Use V to �nd Vkh (k;z) and to infer future values Vkh
�
k0;z0

�
, h = 1; :::; N .

v). Compute
�bkh�0 = �E[Vkh (k;z)]

V
kh
(k;z)

[�h+zhfhk (k
h;`h)]

oh

�
kh
�0
, h = 1; :::; N .

The optimal policy functions satisfy
�bkh�0 = �kh�0, h = 1; :::; N .

In step ii), we need to compute (c; `) satisfying (28), (31) and (32) given (k; z;k0).
This requires us to solve a system of 2N + 1 equations with 2N + 1 unknowns (c; `)
and �. This system can be solved with a standard Newton�s style numerical solver
but the cost of such a solver may become prohibitive when the dimensionality of the
problem increases. Maliar et al. (2011) show a derivative-free iteration-on-allocation
solver that can be used in this context and that can be vectorized for speed.
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3.2.2 ECM-DVF

The �xed-point problem of the ECM-DVF method for the multicountry case also
relies on policy function iteration.

ECM-DVF
Given Kh (k; z), h = 1; :::; N for each (k; z):
i). Compute

�
kh
�0
= Kh (k; z), h = 1; :::; N .

ii). Find (c; `) satisfying (28), (31) and (32) for each given
�
k;z;k0

�
.

iii). Find Vkh (k;z) = u
h
c

�
ch; `h

� �
�h + zhfhk

�
kh; `h

��
, h = 1; :::; N .

iv). Use Vkh to infer future values Vkh
�
k0;z0

�
, h = 1; :::; N .

v). Compute
�bkh�0 = �E[Vkh (k;z)]

V
kh
(k;z)

[�h+zhfhk (k
h;`h)]

oh

�
kh
�0
, h = 1; :::; N .

The optimal policy functions satisfy
�bkh�0 = �kh�0, h = 1; :::; N .

Again, in step iii), we need to solve the same system of equation as under ECM-VF,
i.e., to compute (c; `) satisfying (31), (32) and (28) given (k; z;k0).

3.2.3 Making ECM tractable in high-dimensional problems

The ECM approaches focus on one speci�c issue, namely, on how to reduce the com-
putational cost of solving for value function and its derivatives using the optimality
conditions. However, to build a solution method, we need to specify other computa-
tional choices such as a grid for �nding a solution, a function for approximations, an
integration method, a �tting method, etc. Recent literature distinguished techniques
that are tractable in high-dimensional applications in the context of Euler equation
methods; these are non-product grids, low-cost accurate monomial integration rules,
derivative-free solvers; see Krueger and Kubler (2004), Malin, Krueger and Kubler
(2011), Pichler (2011), Maliar et al. (2011), Judd, Maliar and Maliar (2011, 2012,
2013); see also Maliar and Maliar (2014) for a review. The ECM methods are fully
compatible with all these techniques.
We choose to implement ECM-VF and ECM-DVF following the design of gener-

alized stochastic simulation algorithm (GSSA) method by Judd et. al. (2011). GSSA
uses a set of points produced by stochastic simulation as a grid for �nding a solution.
In this sense, it is similar to simulation-based Euler equation and value function
iteration methods introduced in Marcet (1988) and Maliar and Maliar (2005), re-
spectively.5 However, GSSA di¤ers from the latter methods in two respects: �rst,

5Marcet�s (1988) method is developed in Den Haan and Marcet (1990) and Marcet and Lorenzoni
(1999).
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to insure numerical stability, it uses �tting methods that are suitable for dealing
with ill-conditioned problems and second, to attain high accuracy of solutions, it
uses non-stochastic (monomial and quadrature) integration rules. As a result, GSSA
delivers accuracy levels that are comparable to the best accuracy attained in the
related literature and that are infeasible for purely simulation methods; see Judd et
al. (2011) for a discussion and numerical examples.

3.3 Numerical analysis

We now present the results of numerical experiments for the multicountry model.

3.3.1 Computational choices

We apply the ECM methods to solve Model II with an asymmetric speci�cation; see
the comparison analysis of Kollmann et al. (2011). We chose this model among others
because it represents all challenges posed in the comparison analysis, namely, a large
number of state variables, elastic labor supply, heterogeneity in fundamentals and
the absence of closed-form expressions for next-period state and control variables.6

The utility and production functions are given by

uh
�
cht ; `

h
t

�
=

�
cht
�1�1=h

1� 1=h �B
h

�
`ht
�1+1=�h

1 + 1=�h
, zfh

�
kht ; `

h
t

�
= zhA

�
kht
�� �

`ht
�1����kh,

(37)
where

�
h; Bh; �h

	
are the utility-function parameters; � is the capital share in

production; A is the normalizing constant in output; � 2 (0; 1] is the depreciation
rate. We calibrate the model as in Kollmann et al. (2011b). We use the following
values of common-for-all-countries parameters: � = 0:36, � = 0:99, � = 0:025,
� = 0:01, � = 0:95, � = 0:5, and we assume that the country-speci�c utility-function
parameters h and �h are uniformly distributed in the intervals [0:25; 1] and [0:1; 1]
across countries h = 1; :::; N , respectively. The steady state level of productivity is
normalized to one, zh = 1. We also normalize the steady state levels of capital and
labor to one, k

h
= 1, `

h
= 1, which implies ch = A, � = 1 and leads to A = 1��

��
,

�h = uh (A; 1) and Bh = (1� �)A1�1=h. We consider N = 2, 4, 6 and 8.
We parameterize value function (ECM-VF) and the derivative of value function

(ECM-DVF) with complete ordinary polynomials of degrees 2, 3 and 1, 2, 3, respec-

6Model I has a degenerate labor-leisure choice, and Models III and IV are identical to Model
II up to speci�c assumptions about preferences and technologies. Juillard and Villemot (2011)
provides a description of all models studied in the comparison analysis of Kollmann et al. (2011b).
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tively. As an initial guess, we use a linear approximation to capital policy function.
To solve for the polynomial coe¢ cients, we use �xed-point iteration. To solve for con-
sumption and labor satisfying (28), (31) and (32), we use an iteration-on-allocation
solver developed in Maliar et al. (2011). To approximate integrals, we use a mono-
mial integration rule M1 with 2N nodes, and to �t the value and policy functions
to simulated data, we use a least-squares truncated QR factorization method; see
Judd et al. (2011) for a description of these techniques. We use the same software
and hardware as that used to solve the one-country model. We provide a detailed
description of the studied ECM methods in Appendix B.

3.3.2 Results

In Table 2, we present the results produced by two versions of the ECM method,
ECM-VF that solves for value function and ECM-DVF that solves for derivative of
value function. Below, we report accuracy measures on a stochastic simulation, and
in Appendix C, we also provide such measures on spheres of di¤erent radii used in
the JEDC project; see Juillard and Villemot (2011). Our main �nding is that the

Table 2: Accuracy and speed of ECM-VF and ECM-DVF in the one-country model.a

Default rule ECM-VF ECM-DVF VFI
L1 L1 CPU L1 L1 CPU L1 L1 CPU

�y(b) = 0:65� b -3.85 -3.32 5.41 -3.00 -2.92 5.32 -3.85 -2.83 412.24
�y(b) = 0:75� b -3.86 -3.34 5.48 -3.00 -2.92 5.34 -3.86 -3.34 282.24
�y(b) = 0:95� b -3.85 -3.40 5.39 -2.99 -2.93 5.29 -3.48 -3.00 295.13

a Notes: L1 and L1 are, repectively, the average and maximum of absolute residuals across opti-
mality condition and test points (in log10 units) on a stochastic simulation of 10,000 observations;
CPU is the time necessary for computing a solution (in seconds).

ECM methods are tractable in the context of the given multidimensional problem.
Moreover, the ECM methods are able to produce not only the second-degree but
also far more expensive third-degree polynomial approximations. All Euler equation
methods studied in Kollmann et al. (2011b) are limited to second-degree polynomial
approximation. The ECM methods have an advantage over Euler equation methods
in that they solve for control variables only at present and do not need to �nd such
variables in all integration nodes. This advantage can be especially important in high-
dimensional problems as the number of integration nodes grows with dimensionality.
As far as the accuracy is concerned, ECM-VF is considerably less accurate than

ECM-DVF. Our results suggest that in high-dimensional problems, approximating



value function with a polynomial on a grid does not produce accurate approxima-
tions for derivatives of the value function. This is the same e¤ect that we observed
in Section 2.4.2 for the one-agent model, namely, if we approximate V with a poly-
nomial, we e¤ectively approximate Vk with a polynomial of one degree less, i.e., we
"lose" one polynomial degree.
In turn, the ECM-DVF method is very accurate. It delivers accuracy frontier

attained in the comparison analysis of Kollmann et al. (2011b). In particular, in an
accuracy check on a stochastic simulation, our third-degree solutions are more accu-
rate than second-degree polynomial solutions reported in Kollmann et al. (2011b)
although our second-degree polynomial solutions are somewhat less accurate than
their most-accurate solutions. For example, for a model with N = 8 countries, the
second- and third-degree ECM-DVF polynomial solutions have maximum residu-
als across the optimality conditions of orders 10�4:16 and 10�4:71, respectively. For
comparison, the most accurate second-degree method in Kollmann et al. (2011)
produces maximum residual of order 10�4:50. Thus, we conclude that ECM value
iteration methods can successfully compete with the state-of-the-art Euler equation
methods.7

4 ECM for default risk models

Default risk models focus on borrowing-lending arrangements in which debt is un-
secured and a borrower can default on debt. Examples of situations with default
include sovereign default (e.g, Greek default of 2012, Argentinian default of 2001),
consumer bankruptcy (defaults on loans and mortgages), �rm bankruptcy (defaults
on �nancial or contractual obligations), local government defaults (e.g., Detroit in
2013), etc.
The recent �nancial and sovereign debt crises worldwide has sparked a grow-

ing literature on quantitative models of defaultable debt. Arellano (2008) studied
quantitatively the implications of the seminal paper by Eaton and Gersovitz (1983)
and showed that it was useful for understanding sovereign default in emerging mar-
kets. Aguiar and Gopinath (2006) showed the importance of shocks to trend for
output in emerging economies in the context of a sovereign default model. Chatter-
jee, Corbae, Nakajima and Ríos-Rull (2007) provided a framework to study consumer

7The only method (apart from ours) that has produced third-degree polynomial solutions to a
similar model is a perturbation-based hybrid Euler equation method of Maliar et al. (2011). This
method computes some policy functions locally (using perturbation) and computes the remaining
policy functions globally (using analytical formulas and numerical solvers). In the given model with
N = 8 countries, this method delivers maximum residuals of order 10�4:69.
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bankruptcy in the United States. Their model can rationalize the cross section distri-
bution of bankruptcies across households of di¤erent characteristics. Maliar, Maliar
and Pérez-Sebastián (2008) construct a default risk model of FDI and capital con-
trols; they argue that scarce capital �ow from rich to poor nations can be explained
by a risk of expropriation. Arellano, Bai, and Kehoe (2013) studied the implications
of �rm default for business cycles and for the Great Recession in the United States.
Tsyrennikov (2013) analyzed optimal �scal and default policy in default risk models.
See Aguiar and Amador (2013) for a review of the literature on sovereign debt.
A main challenge for this literature, however, is the computational burden of

models with default. Computational limitations constitute a substantial obstacle to
analyze richer models. Here, we apply the ECM methods to a simple default model
and show that it is reliable and e¢ cient.

4.1 A default risk model

We study a variant of the default risk model of Arellano (2008). A country borrower
may decide to default when the debt is getting too large and or when facing large
negative shock.

A borrower�s problem. A country-borrower is populated by a representative
household with preferences E0

P1
t=0 �

tu (ct) where u is strictly increasing, contin-
uously di¤erentiable and concave and � 2 (0; 1). The borrower receives exogenous
stochastic income yt which follows an AR1 process

log(yt) = � log(yt�1) + "t; (38)

with "t � N (0; �2), � 2 (�1; 1), and � � 0.
The borrower trades one period bonds with international lenders and can default

on the bonds. When the borrower has bonds bt; income yt; and does not default, it
can choose new bond bt+1 at price q(bt+1; yt): Consumption in this case is

ct = yt + bt � q(bt+1; yt)bt+1

A negative value of b means that the country issues bonds to borrow; q(bt+1; yt)
is the price that a borrower will pay for a unit bond depending on the quantity of
bonds issued by the country bt+1 and its current state yt. These variables determine
the probability of default in the next period. The borrower takes as given the bond
price function.
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Default decision. The borrower can default at any time on the debt bt it owes
and pay 0. We assume that the borrower�s default decision is exogenously given by a
function y (bt) such that an agent with the debt bt will default whenever the random
income yt falls below the threshold level yt < y (bt).
By using (38), we can compute the probability of default � (bt+1; yt) at t+ 1

� (bt+1; yt) = prob(y
�
t exp ("t)| {z }
yt+1

< y (bt+1)) = F

�
ln

�
y (bt+1)

y�t

��
(39)

where F is a cumulative distribution function on a normal distribution.

Lenders�problem and bond-price function. Lenders are risk neutral and per-
fectly competitive. Their problem is

max
bt+1

�
qtbt+1 �

1� �t
1 + r

bt+1

�
; (40)

where r is a risk-free interest rate, and �t is a probability of a borrower to default. A
zero-pro�t condition implies that qt = 1��t

1+r
. If �t = 0 (i.e., a borrower never defaults)

than qt = 1
1+r

(risk-free interest rate) and if �t = 1 (i.e., a borrower always defaults)
than qt = 0 (bonds are worthless). If a borrower defaults with some probability
�t 2 (0; 1), then we have qt 2

�
0; 1

1+r

�
. Using (39), we can represent the price

function q (bt+1; yt) by

q (bt+1; yt) =
1

1 + r

�
1� F

�
ln

�
y (bt+1)

y�t

���
: (41)

The probability of default q (bt+1; yt) increases with the amount of debt bt+1, and it
decreases with income yt.

A recursive formulation. To formulate a Bellman equation for the consumer�s
problem, we introduce two value functions V d (y) and V (b; y) that correspond to
default and no-default states. To decide whether to default or not, an agent compare
these two possibilities and chooses the one that implies higher welfare,

V o(b; y) � max
�
V (b; y); V d (y)

	
: (42)

However, by assumption the borrower chooses default if V (b; y) < V (b; y (b)) �
V d (y). If a borrower does not default, his value function V satis�es

V (b; y) = max
b0

�
u(c) + �

Z
max [V (b0; y0); V (b0; y (b0))] dF (y0)

�
s.t. c = y + b� q (b0; y) b0; (43)
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where F is a distribution function of y0.

Relation to Arellano�s (2008) model. In the model of Arellano (2008), a con-
dition for default is de�ned implicitly by (42): a borrower defaults for those y for
which V (b; y) < V d (y) given b. If a borrower defaults, he goes to autarky and gets

V d (y) = u
�
ydef

�
+ �E

�
�V o(0; y0) + (1� �)V d (y0)

�
; (44)

where z is probability of re-incorporating in the world economy after default, and
ydef � y are direct output costs from defaulting. By changing z and ydef , we can
a¤ect V d (y) and hence, the borrower�s incentives to default.
For the case of i.i.d. shocks and when the cost of default is limited to exclusion

from the borrowing market, Arellano (2008) showed that the default decision is a
cuto¤ rule of type y (b). In quantitative simulations for more general shock process
and default costs that paper also contains default decisions that are cuto¤ rules.
Hence, our rule for default y (b) induces the corresponding value function condition
V (b; y) < V d (y) and vice versa. In particular, if we take the cuto¤ rule y (b) that is
implied by Arellano�s (2008) analysis, we will get the same solution as in that paper.
The di¤erence of our analysis from Arellano�s (2008) is that we de�ne y (b) ex-

plicitly and directly. That is, we take the cuto¤ rule y (b) as a primitive and solve
for the corresponding value function condition (42), whereas Arellano (2008) takes
(42) as a primitive and solves for the corresponding cuto¤ rule. For those appli-
cations in which default decision rules do not have the form of well-de�ned cuto¤
rules, we need to distinguish regions in which V (b; y) � V d (y) and construct the
corresponding default rules iteratively.

4.2 Envelope condition method

Assuming di¤erentiability of the price and value functions, in those states in which
default does not occur y � y (b), the quantity of issued bonds b0 satis�es the following
�rst-order condition:

u0(c)[qb(b
0; y)b0 + q(b0; y)] = �E [V ob (b

0; y0)] : (45)

The envelope condition, Vb(b; y) = u0(c), in turn implies the following ECM-DVF
recursion:

Vb(b; y) =
�E [V ob (b

0; y0)]

qb(b0; y)b0 + q(b0; y)
=
�
R
Vb(b

0; y0)1(y0 > y (b0))dF (y0)

qb(b0; y)b0 + q(b0; y)
: (46)
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where 1(X) is an indicator of an event X, and F is a distribution function of y0. The
term corresponding to the indicator function 1(y0 � y (b0)) does not appears in (46)
because for y0 � y (b0), we have V ob (b0; y0) =

@V d(y0)
@b0 = 0.

4.2.1 ECM-VF

We �rst show an ECM-VF �xed-point problem for the default risk model (42)-(43).

ECM-VF
Fix y (b) and choose a set of points (b; y) such that y > y (b).
Compute q(b0; y) using (41).
De�ne L(b) � q(b)b and precompute its inverse L�1.
Given V (b; y), for each point (b; y) de�ne:
i). c = u0�1 [Vb(b; y)].
ii). b0 = L�1(b+ y � c).
iii). bV (b; y) = u (c) + �E [max fV (b0; y0); V (b0; y (b0))g].

The optimal value function satis�es bV = V .
While we can solve for b0 satisfying (43) for each point (b; y) within the main iterative
cycle, doing so would be costly because we need to use a nonlinear solver a large
number of times. Precomputation � constructing a part of a numerical solution
outside the main iterative cycle �can speed up computation greatly; see Maliar and
Maliar (2014) for review of precomputation techniques for dynamic economic models.

4.2.2 ECM-DVF

We now show an ECM-DVF �xed-point problem for the default risk model (42)-(43).

ECM-DVF
Fix y (b) and choose a set of points (b; y) such that y > y (b).
Compute q(b0; y) using (41).
De�ne L(b) � q(b)b and precompute its inverse L�1.
Given Vb(b; y), for each point (b; y), de�ne:
i). c = u0�1 [Vb(b; y)].
ii). b0 = L�1(b+ y � c).
iii). bVb(b; y) = �E[V ob (b

0;y0)]
qb(b0;y)b0+q(b0;y)

=
�
R
Vb(b

0;y0)1(y0>y(b0))dF (y0)
qb(b0;y)b0+q(b0;y)

.

The optimal value function satis�es bVb = Vb.
When implementing ECM-DVF, one need to be careful not to include grid points
for which qb(b0; y)b0 + q(b0; y) < 0. As was shown in Arellano (2008), the amount
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of resources that a country can borrow follows a La¤er curve. Initially, the loan
L(b) � q(b)b increases with b, then it reaches its maximum and �nally, it decreases
to zero because an increased risk of default quickly drives the bond price q(b) to zero
which dominates the product q(b)b; see Figure 1 for an example of the La¤er curve.
A borrower can never be on a negatively-sloping portion of that La¤er curve.

4.3 Numerical analysis

We now construct numerical solutions for the default risk model.

4.3.1 Computational choices

As an example, we consider a simple default rule yt 6 �y(bt) � n� bt, where n is an
exogenous lower bound on the borrower�s net worth. The borrower with the mean
income level yt = 1 would default when its debt rises above 1�n. We consider three
values of n = f0:65; 0:75; 0:95g which imply a defaults roughly the borrower�s debt
rises above 0:35, 0:25 and 0:05 of an average period income respectively. We assume
that the income in (38) is i.i.d, y � N(0; 0:05). Then, the probability of default (39)
is given by

� (bt+1; yt) = prob(yt+1 6 �y(bt+1)) = F (n� bt+1):
where F is a distribution function of a Normal distribution. We choose the remaining
parameters in line with Arellano (2008), namely, we parameterize the utility function
by u (c) = c1��1

1� with  = 2, and we �xed � = 0:94.
We solve the model on b 2 [�0:18; 0:40]. For each realization of output y we

approximate the unknown value function and its derivative using a cubic spline with
21 nodes. Nodes are Chebyshev extrema scaled so that b1 = �0:18; b100 = 0:40. To
perform integration with respect to y0 we use a Gauss-Hermite quadrature rule with
11 nodes. We implemented three algorithms: ECM-VF, ECM-DVF and conventional
VFI which we use for the sake of comparison. ECM-VF was less stable numerically
and required a su¢ ciently accurate initial guess for convergence ECM-VF is less
stable numerically in the default risk model and requires a su¢ ciently accurate initial
guess, while ECM-DVF was robust to the choice of an initial guess. For all three
algorithms, we use an identical convergence criterion that the (maximum across
nodes) change in the value function was smaller than 10�4. All calculations are
performed in MATLAB 2013b on a laptop with an 2.9GHz Intel i7-3520M processor.
We provide a detailed description of the studied computational methods in Appendix
D.
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4.3.2 Numerical results

We show the constructed policy function in Figure 1.

Figure 1. A numerical solution to a default risk model.

As expected, bond issue policy function smoothly approaches the lower boundary.
As panel A shows, the borrower always accumulates/decumulates assets in the high-
est/lowest income state. Panel B plots optimal consumption. It varies substantially
with the borrower�s assets, especially in low income states. The bond price function
in panel C is simply a portion of a Normal distribution function. Panel D plots the
value function V o(b; y). At low levels of assets it becomes �at: this is the interval
where default is possible.
In Table 3, we report the running time and accuracy measures on a stochastic

simulation produced by ECM-VF and ECM-DVF and we compare the results with
those produced by a conventional VFI. The standard VFI takes about 282.2 seconds
to converge, while the ECM-VF and ECM-DVF method take both about 5.5 sec-
onds; hence, we observe about 50x speedups or higher. As in all previous numerical
experiments, the accuracy of ECM-VF is somewhat lower than that of ECM-DVF
as was in all previous experiments.



Table 3: Accuracy and speed of ECM-VF and ECM-DVF in the one-country model.a

Default rule ECM-VF ECM-DVF VFI
L1 L1 CPU L1 L1 CPU L1 L1 CPU

�y(b) = 0:65� b -3.85 -3.32 5.41 -3.00 -2.92 5.32 -3.85 -2.83 412.24
�y(b) = 0:75� b -3.86 -3.34 5.48 -3.00 -2.92 5.34 -3.86 -3.34 282.24
�y(b) = 0:95� b -3.85 -3.40 5.39 -2.99 -2.93 5.29 -3.48 -3.00 295.13

a Notes: L1 and L1 are, repectively, the average and maximum of unit-free absolute residuals in
Bellman equation across test points (in log10 units) on a stochastic simulation of 10,000 observa-
tions; CPU is the time necessary for computing a solution (in seconds).

5 Conclusion

In the paper, we focus on a broad and empirically relevant class of DP problems
characterized by a large, �nite number of continuous state variables and a di¤eren-
tiable value function. There are three main challenges that such problems represent
to numerical solution methods. First, the number of arguments in value and policy
functions increases with the dimensionality of the problem and such functions be-
come costly to approximate numerically. Second, the cost of integration increases as
the number of exogenous random variables increases. Finally, larger problems are
normally characterized by larger and more complex systems of equations which are
more expensive to solve.
We develop ECM methods for DP problems that aim to address these challenges.

Concerning the �rst two challenges, we build ECM on non-product approximation,
integration and interpolation techniques that are designed for dealing with high-
dimensional problems; see Maliar and Maliar (2014) for a review of such techniques.
The last challenge is the main focus of our analysis, namely, we replace conventional
backward VFI iteration with cheap forward iteration based on the envelope condition.
We show that the computational expense of high-dimensional applications can be
reduced even further by combining value and policy function iteration.
We �nd that solving for value function does not accurately identify the derivatives

of value function. The accuracy of ECM can be signi�cantly increased by solving for
the derivatives of value function instead of the value function itself, or, alternatively,
by solving jointly for value function and its derivatives. In the context of large-
scale models studied in the JEDC project, the version of the ECM method that
approximates derivatives of value function can successfully compete with the state-
of-the-art Euler equation methods. Moreover, the ECM methods deliver accurate
solutions to challenging default risk models with a kink in value and policy functions

31



and is faster by orders of magnitude than the conventional VFI in our examples.
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Appendices

In Appendix A, we provide a description of ECM-VF and ECM-DVF for the one-
country model. In Appendix B, we describe how to implement these methods for
the multicountry model. In Appendix C, we present additional accuracy checks for
the multicountry model. Finally, in Appendix D, we show numerical methods used
to solve a default risk model.

Appendix A: ECM for the one-agent model

We �rst describe the ECM-VF method that solves for value function in one-agent
model (1)�(3).

ECM-VF

Initialization.
i). Choose an approximating function V (�; a) � V .
ii). Choose integration nodes, "j , and weights, !j , j = 1; :::; J .
iii). Construct a grid fkm; zmgm=1;:::;M .
iv). Make an initial guess on a(1).

Iterative cycle. At iteration i, given a(i), perform the following steps.

Step 1. For m = 1; :::;M , compute:

i). cm =
�
Vk(km;zm;a(i))
1��+z�k��1m

��1=
.

ii). k0m = (1� �) km + zmk�m � cm.
iii). vm =

c1�m �1
1� + �

PJ
j=1 !jV

�
k0m; z

�
m exp ("j) ; a

(i)
�
.

Step 2. Computation of a that �ts the values vm on the grid.
Run a regression to �nd ba = argmin

a

PM
m=1 kvm � V (km; zm; a)k.

Step 3. Convergence check and �xed-point iteration.

Stop if 1
�M

MX
m=1

��� (k0m)(i+1)�(k0m)(i)
(k0m)

(i)

��� < 10�10, where � = 0:1 is a damping parameter.
Otherwise, use damping to compute a(i+1) = (1� �) a(i) + �ba and go to Step 1.
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We next describe ECM-DVF that solves for the derivatives of value function in
the one-country model (the steps that are identical to those in ECM-VF are omitted).

ECM-DVF

Initialization.
i). Choose an approximating function Vk (�; a) � Vk.
...

Iterative cycle. At iteration i, given a(i), perform the following steps.

Step 1. For m = 1; :::;M , compute
...
iii). dm = �

�
1� � + �zk��1m

�PJ
j=1 !jVk

�
k0m; z

�
m exp ("j) ; a

(i)
�
.

Step 2. Computation of a that �ts the values dm on the grid.
Run a regression to �nd ba = argmin

a

PM
m=1 kdm � Vk (km; zm; a)k.

...
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5.1 Appendix B: ECM for multicountry model

We now describe the ECM-VF method that solves for value function in multicountry
model (27)�(29).

ECM-VF

Initialization.
i). Choose approximating functions Kh

�
�; ah

�
� Kh, h = 1; :::; N and V (�;$) � V .

ii). Choose integration nodes, "j =
�
"1j ; :::; "

N
j

�
, and weights, !j , j = 1; :::; J .

iii). Fix the simulations length T and the initial condition (k0;z0).
iv). Draw and �x a sequence of productivity levels fztgt=1;:::;T using (29).
v). Construct integration nodes, zt+1;j =

�
zht+1;j ; :::; z

h
t+1;j

�
with zht+1;j =

�
zht
��
exp

�
"hj

�
.

vi). Make an initial guess on
�
a1
�(1)

; :::;
�
ah
�(1)
.

Iterative cycle. At iteration i, given
�
a1
�(i)

; :::;
�
ah
�(i)
, perform the following steps.

Step 1. For t = 1; :::; T ,

i). Use kht+1 = bKh
�
kt; zt;

�
ah
�(i)�

, h = 1; :::; N , to recursively calculate fkt+1gt=0;:::;T .
ii). Compute fct; `tgt=0;:::;T satisfying (28), (31) and (32) given fkt;zt;kt+1gt=0;:::;T .
iii). Find b$ satisfying V (kt;zt; b$) =PN

h=1 �
huh

�
cht ; `

h
t

�
+ �

PJ
j=1 V

�
kt+1; zt+1;j ; b$�.

iv). Use V (�; b$) to �nd Vkh (kt; zt; b$) and to infer Vkh �kt+1; zt+1;j ; b$� for j = 1; :::; J .
v). Compute bkht+1 �PJ

j=1 �
V
kh(kt+1;zt+1;j ;b$)
V
kh
(kt;zt;b$) [�ht +zht fhk (k

h
t ;`

h
t )]

oht
kht+1, h = 1; :::; N .

Step 2. Computation of ah that �ts the values bkht+1 on the grid.
Run regressions to �nd bah � argmin

ah

PT
t=1

bkht+1 �Kh
�
kt;zt; a

h
� :

Step 3. Convergence check and �xed-point iteration..

Stop if 1
TN�

TX
t=1

NX
h=1

����(bkht+1)(i+1)�(kht+1)(i)(kht+1)
(i)

���� < 10�7, where � = 0:05 is damping parameter.
Otherwise, use damping to compute

�
ah
�(i+1)

= (1� �)
�
ah
�(i)

+ �bah and go to Step 1.
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We next describe ECM-DVF that solves for the derivatives of value function in the
multicountry model (the steps that are identical to those in ECM-VF are omitted).

ECM-DVF

Initialization.
i). Choose approximating functions Kh

�
�; ah

�
� Kh and Vkh

�
�;$h

�
� Vkh , h = 1; :::; N .

...

Iterative cycle. At iteration i, given
�
a1
�(i)

; :::;
�
ah
�(i)
, perform the following steps.

Step 1. For t = 1; :::; T ,
...
iii). Find dht � uhc

�
cht ; `

h
t

� �
�ht + z

h
t f

h
k

�
kht ; `

h
t

��
and

�nd b$h � argmin
$h

dht � Vkh �kt; zt;$h�, h = 1; :::; N ;
iv). Use Vkh

�
�; b$h� to �nd Vkh �kt; zt; b$h� and

to infer Vkh
�
kt+1; zt+1;j ; b$h� for j = 1; :::; J ;

...

5.2 Appendix C: Additional accuracy tests for multicountry
model

Below, we report the residuals in the model�s equations on spheres of di¤erent radii
for ECM-VF and ECM-DVF methods in the context of multicountry model (27)�
(29); we follow Juillard and Villemot (2011) in the construction of these accuracy
measures.
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Table 4. Accuracy and speed of ECM-DVF in the multicountry model. a  
 

a  L1 and L∞ are, respectively, the average and maximum of absolute value of residuals across optimality conditions and test 
points (in log10 units). CPU is the time necessary for computing a solution (in seconds). For the columns “r = 0.01”. “r = 0.1” and 
“r = 0.3”, the set of test points is a draw of 1000 points located on a sphere with radii 0.01. 0.1 and 0.3, respectively. For the 
column “Stochastic Simulation”, the set of test point is a stochastic simulation of 10.000 observations. 
b In a policy function of 1 country.  
 
 
 
 
 

r = 0.01 r = 0.1 r = 0.3 Stochastic 
Simulation Number of 

Countries 
Polynomial 

Degree CPU 
L1 L∞ L1 L∞ L1 L∞ L1 L∞ 

2nd 29 -4.95 -3.66 -4.12 -2.69 -3.62 -2.13 -3.97 -2.51
N = 2 

3rd 34 -5.09 -3.71 -4.14 -2.72 -3.65 -2.18 -4.01 -2.51

2nd 155 -4.90 -3.66 -3.96 -2.70 -3.48 -2.13 -3.86 -2.48
N = 4 

3rd 1402 -4.92 -3.68 -3.99 -2.74 -3.50 -2.20 -3.90 -2.50

2nd 629 -4.86 -3.64 -3.91 -2.68 -3.43 -2.08 -3.84 -2.47
N = 6 

3rd 21809 -4.88 -3.66 -3.95 -2.69 -3.47 -2.16 -3.88 -2.51

2nd 2888 -4.84 -3.62 -3.88 -2.65 -3.40 -2.04 -3.83 -2.48
N = 8 

3rd 89872 -4.92 -3.68 -3.94 -2.66 -3.41 -1.94 -3.90 -2.48



5.3 Appendix D: ECM for default risk model

We show the ECM-VF method that solves for value function in default risk model
(42)-(43).

ECM-VF

Initialization.
i). Choose an approximating function V (�; a) � V .
ii). Choose integration nodes, "j , and weights, !j , j = 1; :::; J .
iii). Construct a grid fbm; ymgm=1;:::;M covering the area y > y (b).
iv). Compute q(b0; y) using (41).
v). De�ne L(b) � q(b)b and precompute its inverse L�1.
vi). Make an initial guess on a(1).

Iterative cycle. At iteration i, given a(i), perform the following steps.

Step 1. For m = 1; :::;M , compute:

i). cm = Vb
�
bm; zm; a

(i)
��1=

.
ii). b0m = L�1(bm + ym � cm).
iii). vm =

c1�m �1
1� + �

PJ
j=1 !j max

�
V
�
b0m; y

�
m exp ("j) ; a

(i)
�
V
�
b0m; y (bm) ; a

(i)
�	

Step 2. Computation of a that �ts the values vm on the grid.
Run a regression to �nd ba = argmin

a

PM
m=1 kvm � V (km; zm; a)k.

Step 3. Convergence check and �xed-point iteration.

Stop if max
���v(i+1)m � v(i)m

��� < 10�4, where � = 0:1 is a damping parameter.
Otherwise, use damping to compute a(i+1) = (1� �) a(i) + �ba and go to Step 1.
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We next describe ECM-DVF that solves for the derivatives of value function in
default risk model (42)-(43) (the steps that are identical to those in ECM-VF are
omitted).

ECM-DVF

Initialization.
i). Choose an approximating function Vk (�; a) � Vk.
...

Iterative cycle. At iteration i, given a(i), perform the following steps.

Step 1. For m = 1; :::;M , compute
...

iii). dm =
�
PJ
j=1 !jVk(b0m;y

�
m exp("j);a

(i))1(y�m exp("j)>y(b0m))
qb(b0m;ym)b

0
m+q(b

0
m;ym)

.
...

Step 2. Computation of a that �ts the values dm on the grid.
Run a regression to �nd ba = argmin

a

PM
m=1 kdm � Vk (km; zm; a)k.

...

We next describe conventional VFI that solves for value function in default risk model
(42)-(43) (the steps that are identical to those in ECM-VF are omitted).

VFI
...

Step 1. For m = 1; :::;M , use a numerical solver to �nd

i). max
b0m

n
c1�m �1
1� + �

PJ
j=1 !j max

�
V
�
b0m; y

�
m exp ("j) ; a

(i)
�
; V
�
b0m; y (bm) ; a

(i)
��o

,

where cm = bm + ym � b0mq(b0m; ym).
...
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