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In a model with multiple Pareto-ranked equilibria, we show that the
set of equilibria shrinks if we allow trade in assets that pay based
on the realization of a sunspot acting as an equilibrium-selection
device. When the probability of a low-output outcome is high, the
desire to insure against it leads the poor to promise large transfers
to the rich in the high-output state. The rich then lose the incentive
to exert the effort needed to sustain the high output. Thus the
opening of financial markets may destroy the high equilibrium.

We study how asset markets relate to coordination failures. We start with
a model in which in the absence of asset markets multiple equilibria arise. A
sunspot, an extrinsic public signal, correlates agents’ actions and selects the equi-
librium outcome. We then add trade in sunspot-contingent assets and find that
opening financial markets may limit the set of equilibria and in particular may
destroy good equilibria, thus having a perverse effect in the economy. In other
words, the high equilibrium may cease to exist if one allows for trade in sunspot
contingent financial assets.

The model has two types of agents, endowment-rich and endowment-poor, pro-
ducing output and engaging in financial trade. The coordination game has two
equilibria – “low” and “high” – that are selected by the sunspot state. Aggre-
gate output, consumption, and employment are low in the low equilibrium. Both
types face aggregate risk, and each type is better off in the high equilibrium. The
poor buy insurance against the low outcome, and the portfolio of the rich then
pays when the outcome is high. The higher the chance of the low outcome, the
larger the payoff in the high state. But as their utility of consumption is concave,
the rich will not want to exert effort when their financial income is high enough.
The high outcome then fails to be an equilibrium and the financial market has
no trade.

The size of the financial payoff by the poor to the rich determines the up-
per bound on the probability of the low equilibrium. It depends on preferences,
production, and endowments. For example, the higher the inequality of initial
endowments, the higher are the financial trades and the larger is the set of pa-
rameters for which the high equilibrium fails.
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The shaded areas of figure 1 shows the combinations of the low-sunspot prob-
ability, πl, and relative risk aversion, γ, for which both low equilibrium (L) and
high equilibrium (H) exist. Panel A corresponds to a two period and panel B to
an infinite horizon models, respectively. As γ rises, agents want more insurance
and take larger financial positions. In turn, large financial payoffs destroy the
incentives to exert effort, and the high outcome ceases to exist. Denoted by the
solid line in the figure, the upper bound on πl falls.
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Figure 1. : The upper bound on πl that is consistent with equilibrium when
financial markets are open for a range of CRRA γ. The solid and dash-dot lines
correspond to the static and infinite horizons models, respectively.
Parameters are reported in Table A1

This result is in the spirit of Lucas (1976). He argued that one could not
use estimated responses to monetary policy to evaluate changes in the stochastic
process governing money injections because agents’ responses depend on their
expectations. If the distribution of money injections shifts, agents’ responses to
a given money injection change. A parallel arises here: If the distribution of the
sunspot shifts, agents’ responses to a given sunspot realization may change. A
higher πl induces them to raise the amount of insurance for the low sunspot state
and to pay correspondingly more in the high sunspot state and thereby eliminate
the recipients’ incentives to work in the high state. In panel B, the sunspot has
no effect on economic activity, which remains low, in the region between the solid
and dashed lines.

When the sunspot selects an equilibrium, aggregate output is uniquely deter-
mined. We show that markets for equity and a safe asset suffice to implement
sunspot-contingent trades. Because the rich receive transfers from the poor in
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the high state, consumption and wealth inequality are procyclical.1

The paper’s main result, presented in Sections 2 and 3, is about the effects of
insurance (trading Arrow securities on sunspots) against the bad equilibrium on
output. In a pure sunspot example, in an infinitely repeated sunspot economy, and
in an example with sunspots and exogenous shocks, we show that the possibility
of insurance can lead to a breakdown of the good equilibrium and hence might
decrease welfare. If the equilibrium set stays intact finance raises welfare. But if
the high equilibrium is destroyed, welfare falls.

Section III then shows that the argument extends to an infinite horizon econ-
omy. And Section IV shows that the essence of the argument applies in a setting
where equilibrium is unique but in which there are real shocks; agents then trade
real-shock-contingent assets and the wealth effect of rich agents reduces their effort
when the shock is high. Equilibrium still exists, but in the high state aggregate
output is lower than it would be in the absence of financial trade.

The related literature covers several broad topics: Contracting in the presence
of hidden borrowing and lending, sunspot-contingent commodity prices, bank
runs and speculative attacks, and sovereign debt crises.

Contracts and “outside” assets.—Closest to our model and results, contracting
failures have been linked to “outside” asset trading that is not a part of the
contract. Allen (1985), Cole and Kocherlakota (2001), and Bisin and Guaitoli
(2004) show that the possibility of outside borrowing and lending and, more
generally, non-exclusive contracting weakens the power of contracts to discipline
agents and changes equilibrium actions. Similarly, adding asset trading to the
model of Golosov and Menzio (2020) would lead agents to purchase securities
paying in the sunspot states in which they are fired, and that would weaken their
incentives to work. Our results are in line with these implications – it is the
high-output outcome that contracting may destroy.

Sunspot-contingent output and commodity prices.—Peck and Shell (1991) and
Forges and Peck (1995) assume that commodity prices depend on sunspots un-
der complete financial markets. In Bhattacharya, Guzman and Shell (1999)
some agents are restricted from trading sunspot-contingent assets or commodities.
Work on coordination failures as causing business cycles dates back to Cooper
and John (1988) and Benhabib and Farmer (1999) argued is a worthwhile goal of
sunspot models.

Bank runs, speculative attacks.—Multi-investor situations often involve multi-
ple equilibria. A bank run will cause a drop in future output when high-return
long-term investments are not funded. Cooper and Ross (1998) derive the largest

1For most households in the U.S., the main component of wealth is housing, the value of which is
pro-cyclical according to Piazzesi and Schneider (2016). Batty et al. (2019) report that the wealth share
of the top 1% in the U.S. has been procyclical since 1989.
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probability of a run in a sequential-service bank contract above which deposi-
tors will not want to enter into sequential-service contracts. Further, in Peck
and Shell (2003), banks offer less restrictive financial contracts to prevent bank
runs. Second, Freeman (1988) and Bental, Eckstein and Peled (1991) study bank
contracts that allow dependence of a deposit contract on the sunspot, and Gold-
stein and Pauzner (2005) derive a unique probability of a bank-run using a global
game argument. Another strand studies how government intervention affects the
equilibrium – Keister (2016).

Sovereign debt.—In our model financial markets may reduce the number of
equilibria. By contrast, in sovereign debt models like Calvo (1988) and Cole
and Kehoe (2000), they may do the opposite: An equilibrium can exist in which
interest rates are low and in which government debt sells at a high price, and then
the government does not default. But another equilibrium may exist in which the
price of debt is low, the interest rate is high, and the government defaults.

Plan of paper.—Section I begins with a model without financial markets and
then shows how opening financial markets restricts the equilibrium set. It then
describes asset pricing with disaster risk. Section ii specializes to log utility.
Section III generalizes to an infinite horizon. Section IV studies the real version
of the model in which equilibrium is unique. Section V concludes the paper, and
the longer proofs are in the Appendix.

I. The model

Consider a production economy with individuals with preferences described by
a utility function that depends on consumption c > 0 and effort x.

(1) U(c)− κx,

where κ is the utility cost of effort, and where U is increasing and strictly concave.

Production.—Agents are of two types i ∈ {1, 2}, and their population fractions
are fi. A type i agents output is

y(x, x̄) = (α+ x̄)xi.

where xi is effort of agents of type i, and where x̄ is aggregate effort2

x̄ = f1x1 + f2x2.

Endowments and consumption.—Without financial markets, type-i agent’s con-
sumption is zi + (α+ x̄)xi, where zi is the agent’s endowment, with 0 < z1 < z2.

2The term y(1, x̄) could be interpreted as the wage per unit of x offered by competitive firms if
aggregate effort is x̄. Consistent with evidence in Basu and Fernald (2001), productivity of effort, α+ x̄,
will be pro-cyclical.
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The aggregate endowment is

z̄ = f1z1 + f2z2.

We focus on the coordinated equilibria with x̄ = 0 or x̄ = 1. An agent’s output
level then is

Y =

{
0 if low output

1 + α if high output
.

Hence, consumption of type i is

C =

{
zi if low output

zi + 1 + α if high output
.

The two types’ consumption shares in the low-output relative to the high-output
state are ordered as follows:

z1
z1 + 1 + α

<
z2

z2 + 1 + α
.

With CRRA preferences, the low-z or “poor” agent will have a relative preference
for consumption in the low output state. Since effort costs κ are the same for
all, the poor agent will have the greater incentive to deviate from the low equilib-
rium, and the rich agent will have the greater incentive to deviate from the high
equilibrium.
When financial markets allow sunspot-contingent trades, the rich will trade con-

sumption in the low state in exchange for consumption in the high state because
of the relative consumption result and CRRA preferences.3 This will weaken the
incentive for the rich agent to work in the high output state, and will weaken
the incentive for the poor agent to work in the low output state. However, the
stronger effect here is with respect to the rich agent in the high output state, and
if z2 is much larger than z1 the high equilibrium may disappear.
In section III we analyze an infinitely repeated version of the game in which the

introduction of finance allows agent to smooth consumption via the asset market.
We find that the high equilibrium can be more or less likely to survive depending
on parameters. On the one hand, the rich can smooth some of their windfall
gains thereby raising their high-equilibrium utility but on the other, they also
can smooth the income loss entailed in their deviating from that equilibrium.

A. Equilibria with no financial markets

We start with a setting in which there are no financial markets. Until section
IV the model has no intrinsic shocks.

Sunspots.—A sunspot is an extrinsic random variable s that assumes two values:

3In fact, U ′′′ > 0 is enough for our results to be true, but we will rely on the CRRA form to derive
analytical results.
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l and h. Agents can coordinate their actions on the sunspot state s ∈ {l, h}.
Additionally, we restrict attention to symmetric pure strategy equilibria in which
all agents of one type work the same amount so that an agent’s x depends only
on z and on the sunspot realization. Effort xsi is then the only action.

Equilibrium with no assets.—An equilibrium is a function xsi such that for all
(i, s) ∈ {1, 2} × {l, h},

(2) xsi ∈ arg max
x∈{0,1}

{
U
(
z + y(x, x̄s)

)
− κx

}

where

(3) x̄s = f1x
s
1 + f2x

s
2.

Equilibrium “L”.—In the first type of equilibrium, denoted by “L” or “low”,
agents do not work: xsz = x̄s = 0. For this equilibrium to exist, both agent types
must weakly prefer not to work:

U(z1) > U(z1 + α)− κ,(4a)

U(z2) > U(z2 + α)− κ.(4b)

That is, if x̄ is zero, the reward to effort is just α, and each type should prefer
not to work. Because U is concave it is sufficient that the poor are not willing to
work:

(5) U(z1 + α)− U(z1) 6 κ.

Equilibrium “H”.—In the second type of equilibrium, denoted by “H” or “high”,
every agent works: xsz = x̄s = 1. For this equilibrium to exist, both agent types
must weakly prefer to work:

U(z1 + α+ 1)− κ > U(z1),(6a)

U(z2 + α+ 1)− κ > U(z2).(6b)

Because U is concave, it is sufficient that the rich are willing to work:

(7) U(z2 + α+ 1)− U(z2) > κ.

In equilibria H and L, all agents take the same action – either every agent works
or no agent does.4

4In this type of a game, the number of equilibria is generically odd. This means that when the L and
H equilibria both exist, there will also be a third “mixing” equilibrium, which we denote by “M.” Only
the endowment-poor work and x̄ = f1 in the M equilibrium. For this equilibrium to exist, the poor and
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The set of parameters under which both H and L exist, i.e., (5) and (7) hold,
is P:

DEFINITION 1: Let P = {(z1, z2, κ) : U(z2 +α+1)−U(z2) > κ > U(z1 +α)−
U(z1)}.

The set of parameters for which both L and H exist, i.e., the set P is always
non-empty. To see this fix α > 0. Then for any z > 0 consider the following
parameters: z1 = z, z2 = z + ǫ, κ = U(z + α+ 0.5) − U(z) for some small ǫ > 0.
Since the point is strictly inside P, the latter must have a non-empty interior.

For a given κ, the above conditions translate into simple bounds on the endow-
ments. Intuitively, endowment z1 must not be too low as then type-1 individuals
would always work and equilibrium L would not exist. Endowment z2 must not
be too high as then type-2 individuals would never work and equilibrium H would
not exist.

LEMMA 1: For a given κ ∈ (0, U(α)−U(0)], there exist unique zmax > zmin > 0
such that P = {z1, z2, κ : zmin 6 z1 6 z2 6 zmax}.

PROOF:

The boundaries zmin, zmax solve the following equations:

U(zmin + α)− κ = U(zmin),

U(zmax + α+ 1)− κ = U(zmax).

The above equations always have a solution if κ 6 U(α)− U(0). The solution is
unique because U is strictly increasing and concave.

Figure 2 illustrates P and the sets where only one or none of the equilibria
exist.

If agents coordinate their actions on the sunspot state, s ∈ {l, h} determines
aggregate effort x̄ and aggregate output

(8) Y s ≡

{
α+ 1 if s = h
0 if s = l

.

We refer to the equilibria E ∈ {L,H} and aggregate output interchangeably so
that E = L ⇔ Y = 0 and E = L ⇔ Y = α+ 1.

rich agents must weakly prefer to work and not work, respectively:

U(z1 + α+ f1)− κ > U(z1),

U(z2 + α+ f1)− κ < U(z2).

We assume that equilibrium M is never chosen, as we focus on the probability of the low output outcome
– a “disaster.”
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Figure 2. : Equilibrium map under the financial autarky. This figure corresponds
to any set of parameters for which P is non-empty.

B. Equilibria with financial markets

We now describe how opening financial markets affects the equilibrium set.

Financial markets.—There are markets for two Arrow securities. Each security
is in zero net supply, and security s pays a unit of consumption if sunspot state s
realizes tomorrow and zero otherwise. Let Qs be the price of the security paying
in state s, and let ns

i denote agent i’s investment in that security. If all agents
of a given type choose the same portfolio, as we assume, market clearing requires
that for each security s,

(9) f1n
s
1 + f2n

s
2 = 0.

Budget constraint.—Because agents have no income in the first period their
purchases of securities must have zero net value. That is, the budget constraint
for agent i ∈ {1, 2} is

(10) Qlnl
i +Qhnh

i = 0.

In financial autarky, i.e., when financial markets are closed, ns
i = 0,∀i, s.

Timing.—Figure 3 describes the timing of events.
Equilibrium with financial markets.—It is a list of functions Q : {l, h} → R++,

and (xsi , n
s
i ) : {l, h} → {0, 1} ×R for i = 1, 2 such that
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portfolios (ns
i )

chosen

sunspot s
realized

effort xsi
chosen

income zi + ysi + ns
i

received

consumption
csi

Figure 3. : Timing of events

1) Actions (xi, ni) are optimal, i.e., they solve

max
nl

i
,nh

i

∑

s

πs ·max
xs

i

[U(zi + y(xsi , x̄
s) + ns

i )− κxsi ]

subject to the budget constraint (10). There is no commitment to xsi ; they
are optimal ex post and so they appear inside the summation sign.

2) Financial and good markets clear at each s

f1n
s
1 + f2n

s
2 = 0,

f1c
s
1 + f2c

s
2 = z̄ + Y s.

In the model with financial markets, we assume that equilibrium L occurs if
x̄l = 0, and equilibrium H occurs if x̄h = 1. We now examine the set of disaster
probabilities πl for which equilibria L and H both survive. We call such πl values
“admissible.”

Optimality conditions

The first-order necessary conditions imply that for each individual the marginal
rate of substitution between consumption in states h and l equals the relative
price:

(11) q ≡
Qh

Ql
=

πh

πl
·
U ′(zi + α+ 1 + nh

i )

U ′(zi + nl
i)

, i ∈ {1, 2}.

The above implies that the marginal rate of substitution is the same across indi-
viduals: This is a standard risk-sharing result that obtains here because markets
are complete.

The security prices Ql and Qh are also referred to as state prices, and q is the
relative state price. Only q matters and the following lemma is important for the
equilibrium characterization.
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LEMMA 2: If U is homothetic, then the relative state price is

(12) q =
πh

πl
·
U ′(z̄ + Y h)

U ′(z̄ + Y l)
.

PROOF:

The first order optimality condition implies that

U ′(ch1)

U ′(ch2)
=

U ′(cl1)

U ′(cl2)
.

Denoting agent i’s share of consumption by ηsi , preference homotheticity implies

U ′(cs1)

U ′(cs2)
=

U ′(cs1/(z̄ + Y s))

U ′(cs2/(z̄ + Y s))
=

U ′(ηs1)

U ′(1− ηs1)
.

Since U ′′ < 0, the above ratio of marginal utilities is strictly decreasing in ηs1.
Because the ratio of the marginal utilities must be the same across states, we get

(13) ηl1 = ηh1 ≡ η1.

After invoking preference homotheticity again, we obtain the desired result

q =
πh

πl

U ′(ch1)

U ′(cl1)
=

πh

πl

U ′(η1(z̄ + Y h))

U ′(η1(z̄ + Y l))
=

πh

πl

U ′(z̄ + Y h)

U ′(z̄ + Y l)
.

For given α, z̄, Lemma 2 shows that the relative likelihood of states h and l is its
single driving force. Intuitively, the lower the probability of a state the lower is
demand for the security paying in this state. The following lemma states that
q = Qh/Ql decreases in πl.

LEMMA 3: q is decreasing in πl.

PROOF:

By direct differentiation.

Remark for the zero-trade case.—This arises when πl > π̄l. In that case the high
equilibrium disappears, Y h = Y l = 0. Financial markets remain open but there
is no trade and, because consumption is the same in states l and h, the relative
security price is

q =
πh

πl
, ∀πl > π̄l.
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Consumption risk-sharing

The previous section asserts that each agent i consumes a constant fraction ηi of
aggregate income, i.e., the sum of aggregate endowment and production output:

(14) csi = ηi(z̄ + Y s).

This relationship implies that cli < chi , i = 1, 2 because Y l < Y h. We can also
show that the rich will consume a larger fraction of total income. To this end,
using the budget constraint (10) we get

ηi =
zi + Y l + q(zi + Y h)

z̄ + Y l + q(z̄ + Y h)
∈ [0, 1].

Because z2 > z1, the rich consume a larger share of the total good supply, i.e.,
η2 > η1 for any q > 0, as lemma 4 states.

LEMMA 4: With (or without) financial markets open, cli 6 chi ,∀i and cs1 6

cs2,∀s.

Letting ∆z ≡ z2−z1, equation (14) and budget constraint csi = zi+Y s+ns
i imply

nl
1 = η1[z̄ + Y l]− z1 − Y l

6 z̄ − z1 = f2∆z,(15a)

nl
2 = −(f1/f2)n

l
1 > −f1∆z > −∆z.(15b)

An important special case arises when πl = 1, i.e., equilibrium H occurs with
probability 0. In this limit case

(16) ηi

∣
∣
∣
πl=1

=
zi + Y l

z̄ + Y l
.

Optimal portfolios

To understand portfolio decisions consider the case when financial markets are
closed. While a low-endowment type-1 individual has lower utility in every state
his relative marginal value of consumption in the low output state is higher

U ′(z1)

U ′(z2)
>

U ′(z1 + Y h)

U ′(z2 + Y h)
.

A sufficient condition for the above to hold is a decreasing absolute risk aversion
that, in turn, is true if U ′′′ > 0. So, one should expect the low-endowment type
z1 to buy securities that pay in state s = l, nl

1 > 0, and sell securities that pay in
state s = h (nh

1 6 0) as conjectured above. This intuition will be used to derive
sufficient conditions for existence of equilibria H and L.
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Equilibrium H is vulnerable because the wealthier type-2 agent’s incentives to
exert effort could be weakened by financial trade. Type-2 agents insure the poorer
type-1 agents as we argue above. Their incentives to exert effort fall because of
positive financial income in equilibrium H. The formal argument follows below.

Homotheticity of preferences implies (see proof of lemma 2) that

zi + Y h + nh
i

zi + Y l + nl
i

=
z̄ + Y h

z̄ + Y l
.

Combining the above with the budget constraint written as qnh
i = −nl

i, allows
one to determine optimal investment into security h

(17) nh
i =

(Y h − Y l)(zi − z̄)

q · (z̄ + Y h) + z̄ + Y l
.

Notice that nh
2 > 0 as conjectured because z2 > z̄. By direct differentiation,

investment into security h depends on πl as follows

dnh
i

dπl
= −

(Y h − Y l)(zi − z̄)(z̄ + Y h)

[q(z̄ + Y h) + z̄ + Y l]2
·
dq

dπl
.

By lemma 3, nh
2 > 0, dnh

2/dπ
l > 0 and nh

1 < 0, dnh
1/dπ

l < 0. This means the
portfolios grow in size as πl rises. This is the channel through which πl affects
the equilibrium set.

Figure 4 plots the optimal portfolios assuming CRRA preferences. The portfo-
lios rise with risk-aversion because agents demand more insurance.

C. Creating and destroying equilibria

This section will show that there is a number π̄l ∈ (0, 1) so that equation (8)
becomes

(18) Y s =







0 if s = l
α+ 1 if s = h and πl 6 π̄l

0 if s = h and πl > π̄l
.

Then similarly to Lucas’s (1977) claim that the distribution of money injections
changes the slope of the Phillips curve, here the response of Y to s depends on
the distribution of the sunspot s. That is, changing πl changes how s affects Y .

If equilibrium H is destroyed, equation (18) implies that Y s = 0 with probability
1. There is no financial trade because agents consume only once and there is only
one economic outcome. If agents assumed that s = h would lead to everyone
setting x = 1, and hence that outcome H would occur with a positive probability,
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h
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Figure 4. : Optimal portfolios for different levels of risk-aversion under CRRA
preferences: U(c) = (c1−γ − 1)/(1 − γ).
Parameters are reported in Table A1 but f1 = f2 = 0.5

then they would take up financial positions that would eliminate work incentives
for the rich and invalidate that H outcome.
Under financial autarky, L and H equilibria exist under the following four con-

ditions: 5

U(z1 + α)− κ 6 U(z1),(19a)

U(z2 + α)− κ 6 U(z2).(19b)

U(z1 + 1 + α)− κ > U(z1),(20a)

U(z2 + 1 + α)− κ > U(z2).(20b)

As financial markets open, the set of equilibria may change. Financial payments
to the endowment-rich in equilibrium H destroy their incentives to work, thus,
destroying the equilibrium. The need of the endowment-rich to make financial
payments in equilibrium L may prompt them to work.
Our argument below reveals that the endowment-rich is the pivotal agent in

the sense that it is her incentives that could change the equilibrium set. This is
intuitive because the endowment-rich accept consumption that is more volatile
consumption than their income. Consumption of the endowment-rich in equilib-
rium L falls relative to financial autarky, and this raises their incentives to work.
Their consumption in equilibrium H rises, and their incentives to work weaken.
In contrast, consumption volatility of the endowment-poor falls, and their sup-

5We report all four inequalities for completeness, but two are redundant.
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port for both equilibria strengthens.

Under financial autarky, the conditions for existence of equilibria H and L do
not depend on (πl, πh). However, with financial markets open this is no longer
true.

Destroying equilibria

We focus on the set of parameters for which both equilibria L and H exist and
ask if equilibria can be destroyed after opening financial markets. Proposition 5
gives the answer.

PROPOSITION 5: If both equilibria exist under financial autarky, opening fi-
nancial markets can destroy equilibrium H but not equilibrium L.

PROOF:
Suppose that both the H and L equilibria exist under financial autarky, i.e., the

conditions (21) and (22) hold. Because nl
2 6 0, effort incentives of the endowment-

poor decrease, i.e., they cannot destroy the L equilibrium. The opposite is true
of the endowment-rich, as nl

2 6 0. However, equation (15a) shows that nl
2 > −∆z

and we get

U(z2 + α+ nl
2)− κ− U(z2 + nl

2) 6 U(z1 + α)− κ− U(z1) 6 0.

That is, the endowment-rich still prefer not to work.

Because nh
1 6 0, work incentives of the endowment-poor increase, i.e., they

cannot destroy the H equilibrium. The opposite is true of the endowment-rich, as
nh
2 > 0. It is possible that the endowment-rich do not support the H equilibrium

U(z2 + α+ 1 + nh
2)− κ− U(z2 + nh

2) < 0,

In particular, when z1 < z2 = zmax, we have that z2 + nh
2 > zmax, and

U(zmax + α+ 1 + nh
2)− κ− U(zmax + nh

2)

< U(zmax + α+ 1)− κ− U(zmax) = 0.

Figure 5 shows the impact on the equilibrium set. Region L (H) denotes the
set of endowments for which only the L (H) equilibrium exists. The non-shaded
top left corner is where neither of the two equilibria exists. In this region there
exist equilibria with x̄ ∈ (0, 1). In such equilibria a fraction of individuals of type
1 works while the rest do not.

Restriction on πl

When financial markets are open, the equilibrium set depends on πl. The
Appendix proves
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Figure 5. : Equilibrium map when financial markets are open

PROPOSITION 6: Assume that equilibria H and L both exist under financial
autarky. When financial markets open, the two equilibria survive if and only if
πl 6 π̄l for some π̄l > 0. Moreover, the set of parameters for which π̄l < 1 is
non-empty.

The proof that π̄l < 1 is possible reveals there must be some endowment in-
equality in the economy for our argument to work. As inequality rises, as observed
around the world, the high outcome is more likely to be destroyed, and its exis-
tence can be only supported by more optimism, i.e., by lower π̄l.
The above result can be illustrated using figure 5. The area where equilibrium

H is destroyed is around the z2’s upper bound. The equilibrium set and πl are
impacted most when inequality is high, i.e., z2−z1 is maximal. When there is no
inequality, i.e., z2 = z1, the equilibrium set is unaffected and πl is unrestricted.

II. Logarithmic Preferences

Under logarithmic preferences, zmin = α
eκ−1 and zmax = α+1

eκ−1 . The set of
parameters for which both equilibria exist, denoted with “H+L” in Figure 5, is

(21) P =

{

(z1, z2, α, κ) :
α

eκ − 1
6 z1 6 z2 6

α+ 1

eκ − 1

}

.

Next, we derive the optimal portfolios and upper bound on πl. Having an
analytical expression allows us providing further insights into how it depends on
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the economic environment.

A. Optimal portfolios

In this section we derive optimal portfolios under logarithmic preferences. Then,
we analyze the equilibrium set and the supporting beliefs πl.

We start with optimality condition (11), which simplifies to

z1 + nl
1

z1 + α+ 1 + nh
1

=
z2 + nl

2

z2 + α+ 1 + nh
2

=
πl

πh
q,

and implies

q =
πh

πl

z̄

z̄ + α+ 1
.

Using the budget constraints and the market clearing conditions lets us solve for
the optimal portfolios6

nl
2 = −πhf1∆z

α+ 1

z̄ + α+ 1
, nl

1 = πhf2∆z
α+ 1

z̄ + α+ 1
,(22a)

nh
2 = πlf1∆z

α+ 1

z̄
, nh

1 = −πlf2∆z
α+ 1

z̄
,(22b)

where ∆z ≡ z2 − z1. The payoff to the rich nh
2 is positive as conjectured.

B. Restricting equilibrium values of πl

The binding inequality is the incentive of the rich to exert effort that holds
when α+1

eκ−1 > z2 + nh
2 . Let

(23) δ =
1

eκ − 1

which is roughly equal to 1/κ when the latter is small. After substituting the
formula for nh

2 we obtain

(24) πl
6

(α+ 1)δ − z2
(α+ 1)f1∆z/z̄

≡ π̄l.

Together with the condition for the existence of the two equilibria under finan-
cial autarky, inequality (24) is the restriction on equilibrium beliefs under which
both equilibria exist when financial markets are open. Intuitively, πl cannot be
too high as then the endowment-rich type 2 individuals would not work in equi-
librium H and the latter ceases to exist. This happens because as πl grows the

6We use market clearing conditions to determine optimal purchases of securities by type-1 individuals:
ns

1
= −(f2/f1)ns

2
, s ∈ {l, h}.
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relative prices q and nh
2 rise. But when a payoff in any state rises, effort incentives

weaken. The restriction on πl could also be vacuous, e.g., when ∆z = 0, or it
could be prohibitive, e.g., when z2 = (α+ 1)δ.

The term (α + 1)δ − z2 is the largest trade that does not destroy type-2’s in-
centives to work. The term (α + 1)∆z/z̄ determines the size of the payoff to
endowment-rich in equilibrium H, see equation (22b).7 If there were no hetero-
geneity, ∆z/z̄ would be zero and there would be no trade; so, any πl would do.
The term (α+1)f1 is the additional income earned by the poor when equilibrium
H is selected. The larger it is the stronger are trading motives and, hence, the
higher the chances of destroying equilibrium H.

Figure 6 illustrates the relation between π̄l and (α, δ). Notice that as α and/or
δ rise equilibrium L disappears. Similarly, when α and/or δ fall, equilibrium
H disappears. For intermediate values of (α, δ) the figure plots the limit on the
probability of equilibrium L. When α and/or δ are high, but not enough to destroy
equilibrium L, the probability of equilibrium L is unrestricted. In this case the
high-endowment type-2 individuals have a substantial “ insurance capacity” and
provide for the low-endowment individuals while continuing to work. This area
corresponds to the plateau in figure 6.a.

Figure 6.b plots contours of π̄l. To have multiple equilibria with trading of
assets we need δ > z2/(1 + α). When the latter holds at equality, π̄l = 0. The
upper bound π̄l is linear in δ and hyperbolic in α. It rises with δ that is inversely
related to the cost of working, κ.

– As α rises, two effects are operational. First, it is more difficult to destroy
equilibrium H because output rises. Second, trades rise as they are proportional
to (1 + α), which is the rise in aggregate consumption between the L and H
equilibria. However, financial payoffs of any individual cannot exceed (1 + α),
and the first effect dominates.

– As κ rises, equilibrium H is more difficult to support and a smaller range of
probabilities are consistent with an equilibrium. In the region where πl < π̄l, this
parameter has no effect on the size of financial trades or equilibrium prices.

Financial markets do not create new equilibria

For completeness, Appendix A3 shows that financial markets do not create new
equilibria. Formally, Appendix A3 proves the following result:

PROPOSITION 7: Opening financial markets cannot create equilibrium H (L)
equilibrium if only equilibrium L (H) existed under financial autarky.

7The fraction f1 in the equation (24) suggests that the incentives of the endowment poor matter, but
that is not the case because z2 − z̄ = f1∆z .
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Figure 6. : Upper bound on probability of the disaster state πl.
Parameters: logarithmic utility, f1 = f2 = 0.5, z1 = 2, z2 = 4.

C. Welfare

The effect of financial markets on welfare is ambiguous. For πl 6 π̄l, welfare
rises because agents insure each other. For πl > π̄l welfare declines. Figure 7
provides an illustration. It plots the welfare of the rich and poor agents in the
economy with and without financial trade. Welfare is decreasing in πl, as shown
in appendix A2.

If financial markets are closed both the high and the low outcomes are possible,
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and the welfare of the two types is shown by the dotted lines

(25) Wi = πlU (zi) +
(

1− πl
)

[U (zi + 1− α)− κ] .

As πl rises towards π̄l, welfare declines, but opening financial markets improves
everyone’s welfare; the solid line for Wi is above the dotted line for each i. The
opposite is true for πl > π̄l.
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Figure 7. : Welfare with (solid lines) and without (dotted lines) financial markets.

Our result differs from Hart (1975) who showed that partial completion of finan-
cial markets can have a negative welfare effect. Hart had an exchange economy
with no external effects in consumption, whereas we have a production economy
with external effects, and a full set of state-contingent securities is traded, i.e.,
financial markets are complete.

D. Distributional effects

Endowment inequality can be measured by ∆z/z̄. Rising inequality reduces
π̄l. The more dispersed endowments are, the larger are incentives to trade in
equilibrium for then the rich value consumption much less than the poor. On
the other hand, when endowments are similar there is little incentives to trade.
In this case the set of possible sunspot equilibria is unaffected as π̄l > 1 is not
restrictive. Thus, when dispersion is small, ∆z/z̄ 6 δ − z2/(α + 1)/f1, opening
financial markets has no effect on the probability of equilibrium L.

Group sizes also matter. If f1 > f2, each individual from a larger poor type



20 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

saved one unit then individuals in the other, smaller, group would receive more
than one unit. For this reason, the payment to the rich in outcome h rises with
f1, and it may destroy equilibrium H.
In societies with a small fraction of poor individuals, opening financial mar-

kets is unlikely to affect the equilibrium set. A significant improvement in risk-
sharing across equilibria can be achieved, as it costs little for the populous high-
endowment group to insure a small group of poor. Formally, |cH1 − cL1 | falls as
f2 rises. Low-endowment individuals demand insurance, and high-endowment
individuals are willing to provide it, regardless of the group proportions (f1, f2).

E. Risk-aversion

Log preferences greatly simplify our derivations, but our results carry over to
the case with any CRRA utility function.8 What role does risk-aversion play?
Figure 4 plots purchases of Arrow security h of the poor type-1 and the rich type-2
individuals as functions of πl. As the risk-aversion coefficient rises from γ = 1 to
γ = 5 the position in the Arrow security H of the rich type-2 rises faster. More
risk-averse individuals opt for a more equitable allocation that is supported by
taking larger portfolio positions. Such a large transfer, however, violates the rich
type’s “incentives constraint” – the rich type stops working and only equilibrium
L survives. Thus, as the level of risk-aversion rises π̄l falls. As shown in figure 1,
the set of parameters for which equilibrium H exists shrinks.

III. Infinite-horizon version

Time is infinite and indexed by t = 0, 1, 2, .... We assume that sunspot s is
an i.i.d. random variable that takes on two values s ∈ {l, h} with probabilities
πl and πh. There are two types of agent indexed by i ∈ {1, 2}. A type i agent
receives a constant endowment, zi in each period.

A. No financial markets

With no financial markets, only the sunspot realization s matters for decisions.
An agent has utility of consumption U(c), and takes decision rules of others as
summarized by x̄s as given. A type-i agent’s lifetime utility in state s, As

i , satisfies

(26) As
i = max

x






U(zi + (α+ x̄s)x)− κx+ β

∑

j∈{l,h}

πjAj
i






.

The expected continuation value
∑

j∈{l,h} π
jAj

i does not depend on agent’s ac-
tions. As a consequence, the conditions for equilibrium L and H existence are the
same as in the one-period model.

8We do not provide details but we point out that the ratio of individual consumption and the aggregate
supply of goods across the two sub-game equilibria are all the same.
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B. Financial markets

Each period financial markets trade two securities. Assuming that current
state is s, security j trades at Qsj and pays one unit of consumption if state
s′ = j realizes tomorrow. Each agent starts with a zero financial position in
period ni,0 = 0. Trading in financial markets starts in period 0, production,
consumption, and endowments flow start at t = 1.

Decisions.—Agents take as given asset prices (Qsl, Qsh) and the decision rules
of others, as summarized by x̄s. The budget constraint of a type i agent who
starts with financial position n in state s and chooses effort x is

(27) zi + (α+ x̄s)x+ n = csi +
∑

j∈{l,h}

Qsjn′j.

Solving for consumption from (27), optimal lifetime utility is

V s
i (n) = max

x,n′






U((α+ x̄s)x+ zi + n−

∑

j∈{l,h}

Qsjn′j)− κx

+ β
∑

j∈{l,h}

πjV j
i (n

′j)






,(28)

Since markets are dynamically complete and U(c) = c1−γ/(1 − γ) is homothetic,
each agent consumes a constant fraction of aggregate income. As a result, price
of any security j depends on s but not on time. Let

(29) D =

(
z̄ + α+ 1

z̄

)−γ

.

LEMMA 8: A type i agent consumes a constant share φi of aggregate income so
that

(30) csi (n) = φi(z̄ + ys),

where

(31) φi =
πlzi + πh(zi + yh)D

πlz̄ + πh(z̄ + yh)D
=

{
< 1, i = 1
> 1, i = 2

.

Security prices are

(32) Qsj = βπj

(
z̄ + yj

z̄ + ys

)−γ

.
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The Appendix also shows that the rich agent receives a net financial transfer
from the poor agent when s = h, as in the one-period model.

Financial equilibrium H.—In any equilibrium, optimal consumption does not de-
pend on κ. This allows one to find κ such that equilibrium H exists under financial
autarky but not when the financial markets are open, as stated in the next propo-
sition:

PROPOSITION 9 (Equilibrium H can be destroyed): For any z1 < z2, any α >
0 and any πl ∈ (0, 1), there exists κ > 0 such that equilibrium H exists if financial
markets are closed, but not if they are open.

Further, the following corollary states that equilibrium H destruction is more
likely when πl is high, as in the one-period model.

COROLLARY 10: Suppose that for some (z1, z2, y
h, κ) and πl ≡ π̂ < 1 equilib-

rium H is destroyed after opening financial markets. Then, there exists a value
π̄l
∞ 6 π̂ such that equilibrium H is destroyed for all πl > π̄l

∞ but it continues to
exist if πl < π̄l

∞.

Log utility case.—We cannot establish that π̄l
∞ < 1 in general. The upper

bound on πl solves the following equation

(33) U(z2 + 1 + α+ bh2)− U(z2 + bh2) = κ.

where bh2 is the net consumption of wealth in state h that depends on πl and that
is given by equation (A17). With U(c) = log(c), we have bh2 = πl(z2 − z̄)(1 +
α)/z̄, and the static bound π̄l solves the above equation. This fact implies that
equilibrium H is destroyed at the πl = π̄l, and by corollary 10, the upper bound
on πl in the infinite case, π̄l

∞, is smaller or equal to that in the static case

π̄l
∞ 6 π̄l.

See figure 1 for the comparison of the numerically computed upper bounds on πl

for the static and infinite horizon models.

IV. A real-shock version

We now show that our results extend to models with unique equilibria where
sunspots play no role.

A. Unique equilibrium with real shocks

Suppose that there is no external effect and assume that the production function
is

agent i’s output = αxi
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with xi ∈ {0, 1} and with the effort cost still κxi and a two-point wealth distribu-
tion at (z1, z2). Additionally, suppose that α is a random variable assuming two
values α2 ≫ α1 > 0 and the distribution as follows

(34) α =

{
α1 with prob. µ
α2 with prob. 1− µ

.

Equilibrium can then be unique for each α realization and sunspots do not play
a role.

Boom.—Let α2 be such that everyone wants to work, which is true when

(35) U(z2 + α2)− U(z2) > κ.

The poor then also want to work, and this is the economic boom “outcome H”
with aggregate output Y α2 = α2.

Disaster.—If α1 is low enough, no one wants to work. This is true when

(36) U(z1 + α1)− U(z1) < κ.

The rich then also do not want to work, and this is the economic disaster “outcome
L” with aggregate output Y α1 = 0. Disaster size is Y α2 − Y α1 = α2.

We assume that (35) and (36) both hold so that equilibrium is unique condi-
tional on α.

Financial markets.—The financial markets trade two Arrow securities that pay
based on the realization of α. The poor still desire to insure against state α1,
and they achieve it by selling Arrow security α2 that pays in state α2. With
logarithmic utility, the optimal portfolios are

nα2

j = µ(zj − z̄)α2/z̄,(37a)

nα1

j = −(1− µ)(zj − z̄)α2/(z̄ + α2).(37b)

Equations (37a) and (37b) show that the higher is the “disaster probability” µ,
the larger the payment nα2

2 the rich receive in state α2. Suppose that if the poor
were to transfer their entire endowment z1 to the rich, the rich would not want
to work in the high state so that

U(z1 + z2 + α2)− U(z2) < κ.

Then there must exist µ̄ < 1 such that the post-transfer inequality (35) would
not hold for µ > µ̄. In the latter case, only poor work and aggregate output is
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Y = f1α2. This is a middle “outcome M.” In turn, optimal portfolios change to

nα2

2 = µz2f1α2/z̄,(38a)

nα1

2 = −(1− µ)z2f1α2/(z̄ + f1α2).(38b)

There is a discrete rise in payoff to the rich that reinforces their incentives not to
work.

nα2

2 (Y = α2) < nα2

2 (Y = f1α2).

Figure 8 plots the optimal portfolio of the rich and shows the pairs of outcomes
can occur as a function of µ. The real-shock version of the model places an upper
bound on the size of the disaster as well as its probability. In contrast to the
sunspot model, when µ > µ̄, the size of the disaster does not fall to zero but to
f1α2. There is still a financial equilibrium but with a lower positive output, while
there would be no positive-output equilibrium in the model described in section
I.

0 µ− 1

H+L outcomes

M+L outcomes

n
2

α 2

prob(α1), µ

Figure 8. : Rich agent’s holding of α2-security and the possible outcomes as a
function of the probability of low-productivity state α1

B. Sunspots and real shocks together

If we add the real shock in (34) but revert to the original production function
(α + x̄)xi, then the externality may create more than one equilibrium in each α
state. We may assume that (α1, α2) are both in the range where equilibria L and
the H both exist. The disaster state then is (s, α) = (l, α1).
Financial markets trade four Arrow securities, each paying in one of the four

realizations of (s, α). The poor want to insure against the disaster state (l, α1),
which probability is πlµ. If this probability is high enough, transfers from the
poor to the rich may again be large enough to eliminate the high equilibria or
reduce output when α = α2.
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V. Conclusion

In a model in which multiple Pareto-ranked equilibria may arise, we showed
that when agents wish to hedge against the risk of a disaster, opening financial
markets can make things worse. Rather than allowing agents to insure themselves,
financial markets can destroy the H equilibrium and make the disaster inevitable,
with no insurance provided. The welfare effects of finance are therefore ambigu-
ous; if the equilibrium set stays intact welfare rises but if the high equilibrium is
destroyed, welfare falls.

We showed that the probability of disasters depends negatively on the degree of
risk aversion and that inequality in wealth and consumption is pro-cyclical which
evidence supports. These implications continue to hold in an infinitely repeated
version of the model, as well as in an extended version of the model that has real
shocks, a unique equilibrium, and in which asset trading is on real shocks and not
on sunspots.
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Mathematical Appendix

A1. Proof of proposition 6

PROOF:

According to proposition 5, only equilibrium H can be destroyed and, thus, we
need to analyze its existence. Since it exists under financial autarky, we have

(A1) U(zi + 1 + α)− κ− U(zi) > 0.

At πl = 0 the payoff nh
1 = nh

2 = 0, and equilibrium H continues to exist. At
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πl > 0, the gain from exerting effort in equilibrium H is

(A2) ∆i ≡ U(zi + 1 + α+ nh
i )− κ− U(zi + nh

i ).

Since nh
1 > 0, ∆1 > 0. Hence, we only need to analyze the incentives of the

endowment-rich individuals.

The derivative of the gain ∆2 is

d∆2

dπl
=

[
U ′(z2 + 1 + α+ nh

2)− U ′(z2 + nh
2)
]dnh

2

dπl
< 0.

It is negative because the term in the square brackets is negative and the derivative
of nh

2 is positive, i.e., the payoff to the endowment-rich individual is decreasing
with πl as explained in section I.B. The incentives for the wealthy to exert effort
decrease, as the probability of equilibrium L increases. This means that there
exists a upper bound on πl, proving the first statement of this proposition.

The upper bound is informative if the rich do not have incentives to work
at πl = 1. Using (16), consumption of the rich in state h, when it occurs with
probability 0, is c̃2 = z2/z̄ ·(z̄+1+α). If the rich stop working, their consumption
declines by 1 + α. Hence, work incentives of the rich are destroyed when

U
(z2
z̄
(z̄ + 1 + α)

)

− κ < U
(z2
z̄
(z̄ + 1 + α)− 1− α

)

.

The above inequality can be rewritten to resemble the condition for the rich to
exert effort in financial autarky (7), which is this proposition’s assumption,

(A3) U
(

z2 +
z2
z̄
(1 + α)

)

− κ < U
(

z2 +
(z2
z̄

− 1
)

· (1 + α)
)

.

If z2 equalled z̄, the above inequality would contradict (7). However, it is possible
that both (A3) and (7) hold when z2 > z̄. In particular, take z2 = zmax such
that (7) holds at equality. Then, (A3) holds strictly because U

(
z2 +

z2
z̄ (1 + α)

)
−

U
(
z2 +

(
z2
z̄ − 1

)
(1 + α)

)
is decreasing in z2. Because U is continuous, the two

inequalities hold strictly for z2 near zmax. This proves that the set of parameters
for which π̄l < 1 is non-empty.

A2. Proof that welfare decreases in πl

LEMMA 11: Assume that U = log. If both the L and H equilibria exist, welfare
level Wi decreases in πl for i = 1, 2.

PROOF:
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The following is true for any utility function:

dW1

dπL
=U(z1 + nL

1 )− U(z1 + α+ 1 + nH
1 )

︸ ︷︷ ︸

negative

+ πLu′(z1 + nL
1 )

dnL
1

dπL
+ (1− πL)U ′(z1 + α+ 1 + nH

1 )
dnH

1

dπL
︸ ︷︷ ︸

both terms are negative

< 0.

Letting U(c) = log(c) one obtains:

dW2

dπL
=U(z2 + nL

2 )− U(z2 + α+ 1 + nH
2 )

︸ ︷︷ ︸

negative

+ πLu′(z2 + nL
2 )

dnL
2

dπL
+ (1− πL)U ′(z2 + α+ 1 + nH

2 )
dnH

2

dπL
︸ ︷︷ ︸

both terms are positive

=U(z2 + nL
2 )− U(z2 + α+ 1 + nH

2 )

+ πLπHf1∆z(α+ 1)

[
U ′(z2 + nL

2 )

z̄ + α+ 1
+

U ′(z2 + α+ 1 + nH
2 )

z̄

]

,

where the last equality relies on the optimal portfolios derived in (22b) and (22a).
Then by the concavity of U and the fact that U ′(z2 +α+1+nH

2 )/U ′(z2 +nL
2 ) =

(z̄ + α+ 1)/z̄ we get

dW2

dπL
6− U ′(z2 + a+ 1 + nH

2 )(α + 1)

+ πLπHf1∆z(α+ 1)

[
U ′(z2 + nL

2 )

z̄ + α+ 1
+

U ′(z2 + α+ 1 + nH
2 )

z̄

]

=− U ′(z2 + a+ 1 + nH
2 )(α + 1) + 2πLπHf1∆z(α+ 1)U ′(z2 + α+ 1 + nH

2 )/z̄

=U ′(z2 + a+ 1 + nH
2 )(α + 1)[−1 + 2πLπHf1∆z/z̄] < 0.

A3. Proof that equilibria cannot be created

Suppose that without financial markets only equilibrium L or equilibrium H
exists. Could the other equilibrium be “created” by opening financial markets?
The following proposition states that it is not the case.

PROPOSITION 12: If only the H (L) equilibrium exists under financial autarky,
opening financial markets cannot create the L (H) equilibrium.

PROOF:
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Suppose only the L equilibrium exists under financial autarky. In this case, one
or both of the inequalities holds so that at least one type is not willing to work

U(z1 + α+ 1)− κ < U(z1),

U(z2 + α+ 1)− κ < U(z2).

When financial markets open, the incentives of the endowment-rich to work de-
crease because nh

2 > 0. Hence, the H equilibrium continues to be non-viable.
Mathematically, the concavity of U implies that the gain from working is nega-
tive:

U(z2 + α+ 1 + nh
2)− κ− U(z2 + nh

2) 6 U(z2 + α+ 1)− κ− U(z2) < 0.

Suppose only equilibrium H exists under financial autarky. In this case, at least
one of the inequalities below holds

U(z1 + α)− κ > U(z1),

U(z2 + α)− κ > U(z2).

When financial markets open, the incentives of the endowment-rich to work in-
crease because nl

2 6 0. Hence, the L equilibrium continues to be non-viable.
Mathematically, the concavity of U implies that the gain from working is positive

U(z2 + α+ nl
2)− κ− U(z2 + nl

2) > U(z2 + α)− κ− U(z2) > 0.

A4. Proofs for the infinite horizon model

Proof of Lemma 8

We start with optimization problem of agent i as stated in equation (28). The
envelope theorem implies that in (28), V ′ (n) = U ′ (c), and so the first-order

condition w.r.t. nj
j
′ yields the consumption Euler equation

(A4) Qsj = βπjU
′
(
c′i

j
)

U ′ (csi )
.

Because each agent faces the same asset prices, the marginal utilities of the two
types must grow at the same rate

U ′
(
c′1

j
)

U ′ (cs1)
=

U ′
(
c′2

j
)

U ′ (cs2)
, ∀ (s, j) .

Homotheticity of U then implies that the consumption growth of both types must
also be the same, and must equal the growth of the aggregate supply of goods in
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all state pairs:

(A5)
c′1

j

c1
=

c′2
j

c2
=

z̄ + yj

z̄ + ys
, ∀(s, j).

Individual consumption must then be proportional to the aggregate supply of
goods:

(A6) ci = φi(z̄ + ys), i ∈ {1, 2} .

Eqs. A4 and (A6) imply (32).

Expected marginal utilities at t = 1 (when z is received for the first time) are
equated to costs Q0j and the envelope condition then yields

πhU ′(chi )

πlU ′(cli)
=

πh

πl

(
z̄ + yh

z̄ + yl

)−γ

=
Q0h

Q0l
.

Because there is no consumption in the opening period, one price at t = 0 needs
to be normalized. We thus set

(A7) Q0l = πl, and Q0h = πhD,

so that

(A8) D =
Q0h

πh
=

(
z̄ + α+ 1

z̄

)−γ

.

Then for t = 0, security prices are:

Q0l = πl,(A9a)

Q0h = πhD.(A9b)

For t > 1, security prices are state-dependent but not time-dependent. The
present discounted value of aggregate income, that depends on state s, solves the
following system of equations

I0 = πlI l + πhDIh,(A10a)

I l = z̄ + βπlI l + βπhDIh,(A10b)

Ih = z̄ + yh + βπlI l/D + βπhIh.(A10c)
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The solution is

I0 = [πlz̄ + πh(z̄ + yh)D]/(1 − β),(A11a)

I l = [(1− βπh)z̄ + βπh(z̄ + yh)D]/(1 − β),(A11b)

Ih = [βπlz̄/D + (1− βπl)(z̄ + yh)]/(1 − β).(A11c)

Derived in the same way, present discounted value of individual income is

I0i = [πlzi + πh(zi + yh)D]/(1 − β),(A12a)

I li = [(1− βπh)zi + βπh(zi + yh)D]/(1 − β),(A12b)

Ihi = [βπlzi/D + (1− βπl)(zi + yh)]/(1 − β).(A12c)

The consumption share of an agent i is

(A13) φi = I0i /I
0 =

πlzi + πh(zi + yh)D

πlz̄ + πh(z̄ + yh)D
.

Choice of x.—Equilibrium H exists if for i ∈ {1, 2}

∆V h
i ≡max

n′






U(α+ 1 + zi + n−

∑

j∈{l,h}

Qhjn′j)− κ+ β
∑

j∈{l,h}

πjV j
i (n

′j)







−max
n′






U(zi + n−

∑

j∈{l,h}

Qhjn′j) + β
∑

j∈{l,h}

πjV j
i (n

′j)






> 0,(A14a)

and equilibrium L exists if for i ∈ {1, 2}

∆V l
i ≡max

n′






U(α+ zi + n−

∑

j∈{l,h}

Qhjn′j)− κ+ β
∑

j∈{l,h}

πjV j
i (n

′j)







−max
n′






U(zi + n−

∑

j∈{l,h}

Qhjn′j) + β
∑

j∈{l,h}

πjV j
i (n

′j)






≤ 0.(A14b)

While the optimal n′ will generally differ if the agent deviates from his equi-
librium choice of x, we can use a sufficient condition if the equilibrium portfolio
choices remain feasible following the deviation. Feasibility can be an issue if the
deviation is from x = 1 to x = 0 which then entails a loss of income. We will show
in equation (A17)) that if the rich deviate, they can still hold their pre-deviation
portfolio and still have strictly positive consumption. In that case, we have the
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following upper bound on the return to exerting effort

∆V h
2 6 U



z2 + yh + nh
2 −

∑

j∈{l,h}

Qhjn′
2
j



− κ− U(z2 + nh
2 −

∑

j∈{l,h}

Qhjn′
2
j)

= U(z2 + yh + bh2)− U(z2 + bh2)− κ.(A15)

Derivation of net portfolio payoff

By the budget constraint (27), net portfolio payoff must equal net consumption

(A16) bsi ≡ ns
i −

∑

j

Qsjn′
i
j = csi − (zi + ys).

Under the assumptions of lemma 8, net consumption of agent i in state s = h is

(A17) chi − (zi + yh) =
πl(zi − z̄)yh

πlz̄ + πh(z̄ + yh)D
=

{
< 0, i = 1
> 0, i = 2

.

That is, the endowment-rich type 2 agent consumes more than his or her in-
come in state s = h or, equivalently, receives a net financial transfer from an
endowment-poor type 1 agent.
Intuitively, consumption of the richer type-2 agent is more volatile. He or she

suffers from consumption volatility less because since U ′′′ > 0, period utility is
flatter at higher levels of consumption.

Proof of proposition 9

Suppose that ∆Ah
i > 0,∀i. We will show that it is possible to chose κ so that

∆V h
2 < 0.

By equation (A15), we have ∆V h
2 6 U(z2+yh+bh2)−κ−U(z2+bh2), where b

h
2 > 0

is the optimal consumption of wealth of type-2 agent in state h. Because bh2 > 0
and U is strictly concave, we have

U(z2 + yh + bh2)− U(z2 + bh2) < U(z2 + yh)− U(z2).

Define κ = 0.5[U(z2 + yh + bh2)−U(z2 + bh2) +U(z2 + yh)−U(z2)] > 0, for which
we have

U(z2 + yh + bh2)− U(z2 + bh2) < κ < U(z2 + yh)− U(z2),

or, equivlently,

(A18) U(z2 + yh + bh2)− κ− U(z2 + bh2) < 0 < U(z2 + yh)− κ− U(z2).

The left and right inequality imply, respectively, that ∆V h
2 < 0 and ∆Ah

2 > 0.
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Because type-2 agent prefers not to work when s = h, equilibrium H is destroyed
after opening financial markets.
Note that, because all expressions are continuous functions of the parameters,

there must exist an open set containing the identified parameters and for which
the proposition’s statement holds. This proves the proposition.

Proof of corollary 10

Since all expressions are continuous functions of the parameters, there must
exist an open set containing the identified parameters and for which the proposi-
tion’s statement holds. As shown above,

U(z2 + yh + bh2)− U(z2 + bh2) < κ < U(z2 + yh)− U(z2).

Since bh2 in Eq. (A16) increases with πl, U(z2+ yh+ bh2)−U(z2 + bh2) decreases as
πl increases. Thus, there must exist a value π̂ such that the left inequality holds
for all πl < π̂ but that it reverses for πl > π̂.
For log utility U = log, we solve log(z2 + yh + bh2) − log(z2 + bh2) = κ for π̂l as
follows

log(z2 + yh + bh2)− log(z2 + bh2) = log(1 + yh/(z2 + bh2)) = κ

log(1 + yh/(z2 + bh2)) = κ

δyh/(z2 + bh2) = 1

δyh − z2 = bh2

where δ is defined in equation (23). In equation (A8) we see that when γ = 1,
D = z̄/(z̄ + yh). Using (A17) and the fact that bh2 is increasing in πl we then get
the following upper bound for π̄:

π̂ =
(z̄ + yh)D

(z2−z̄)yh

δyh−z2
− (z̄ − (z̄ + yh)D)

=
z̄
(
δyh − z2

)

(z2 − z̄)yh
.

Since yh = α+ 1, π̂ = π̄l as defined in (24).

A5. Parameters used by figure 1

κ 0.40 cost of investing
f1 0.90 the fraction of endowment-poor
(z1, z2) (0.20, 1.00) endowments
α 0.06 loss of total output in equilibrium L

Table A1—: Parameters used to produce Figure 1
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Equilibrium L cannot be destroyed

Suppose that equilibrium L exists under financial autarky, i.e.,

κ > u(zi + α)− u(zi), ∀i.

This implies that for any b > 0 we have

(A19) u(zi + b)− u(zi + α+ b) + κ > 0, ∀i.

Let E to denote expectation over state s, and let m̂ denote the optimal portfolio
chosen by an agent choosing to deviate in equilibrium L. Then

max
m

{u(zi + n−Qm) + βE[V s(ms)]}

−max
m

{u(zi + α+ n−Qm)− κ+ βE[V s(ms)]}

> u(zi + n−Q · m̂)− u(zi + α+ n−Q · m̂) + κ > 0.

The last inequality follows from (A19) if n−Q · m̂ > 0, which we establish next.
Independently of whether an agent follows the equilibrium actions or deviates,

his or her consumption at the same aggregate rate as anyone else’s. Thus, the
present discounted value of one’s consumption is a constant fraction of the present
discounted value of the aggregate income, PY . Then,

n+ PYi = φiPY

n+ PYi + α = φ̂iPY

and a deviating agent consumes a larger fraction of the aggregate income than
his or her non-deviating counterpart

(A20) φ̂i = φi + α/PY.

Next

n−Q · m̂ = φ̂iz̄ − zi − α = φiz̄ − zi + α(z̄/PY − 1) →β→0 φiz̄ − zi.(A21)


